LISTA 06_7 EQUAÇÕES DIFERENCIAIS

Sistema de equações lineares não homogêneas

Respostas no final

Gabaritos na página do professor

Em cada um dos problemas de 1 a 12, encontre a solução geral do sistema de equações dado.

1.
$$\mathbf{x}' = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} e^{t} \\ t \end{pmatrix}$$
2.
$$\mathbf{x}' = \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} e^{t} \\ \sqrt{3}e^{-t} \end{pmatrix}$$
3.
$$\mathbf{x}' = \begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} -\cos t \\ -2e^{t} \end{pmatrix}$$
4.
$$\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} e^{-2t} \\ -2e^{t} \end{pmatrix}$$
5.
$$\mathbf{x}' = \begin{pmatrix} 4 & -2 \\ 8 & -4 \end{pmatrix} \mathbf{x} + \begin{pmatrix} t^{-3} \\ -t^{-2} \end{pmatrix}, \quad t > 0$$
6.
$$\mathbf{x}' = \begin{pmatrix} -4 & 2 \\ 2 & -1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} t^{-1} \\ 2t^{-1} + 4 \end{pmatrix}, \quad t > 0$$
7.
$$\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 2 \\ -1 \end{pmatrix} e^{t}$$
8.
$$\mathbf{x}' = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{t}$$
9.
$$\mathbf{x}' = \begin{pmatrix} -\frac{5}{4} & \frac{3}{4} \\ \frac{3}{4} & -\frac{5}{4} \end{pmatrix} \mathbf{x} + \begin{pmatrix} 2t \\ e^{t} \end{pmatrix}$$
10.
$$\mathbf{x}' = \begin{pmatrix} -3 & \sqrt{2} \\ \sqrt{2} & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t}$$
11.
$$\mathbf{x}' = \begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} \cos t \\ \sec t \end{pmatrix}, \quad 0 < t < \pi$$
12.
$$\mathbf{x}' = \begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} \csc t \\ \sec t \end{pmatrix}, \quad \frac{\pi}{2} < t < \pi$$

13. O circuito elétrico mostrado na figura é descrito pelo sistema de equações diferenciais abaixo em que x_1 é a corrente através do indutor, x_2 é a queda de tensão através do capacitor, e I(t) é a corrente fornecida pela fonte externa.

$$\frac{d\mathbf{x}}{dt} = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{8} \\ 2 & -\frac{1}{2} \end{pmatrix} \mathbf{x} + \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} I(t)$$

$$R = 4 \text{ ohms}$$

$$R = 4 \text{ ohms}$$

- (a) Determine uma matriz fundamental Ψ (t) para o sistema homogêneo associado). Veja o Problema 25 da aula 06_4.
- (b) Se $I(t) = e^{-t/2}$, determine a solução do sistema que satisfaz a condição inicial $\mathbf{x}(0) = \mathbf{0}$.

Em cada um dos Problemas 14 e 15, verifique se o vetor dado é a solução geral do sistema homogêneo associado e depois resolva o sistema não homogêneo. Suponha que t > 0.

14.
$$t\mathbf{x}' = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 1 - t^2 \\ 2t \end{pmatrix}, \quad \mathbf{x}^{(c)} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} t^{-1}$$
15. $t\mathbf{x}' = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} -2t \\ t^4 - 1 \end{pmatrix}, \quad \mathbf{x}^{(c)} = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} t^{-1} + c_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} t^2$

- 16. Seja $x = \phi(t)$ a solução geral de x' = P(t)x + g(t) e seja x = v(t) uma solução particular do mesmo sistema. Considerando a diferença $\phi(t) v(t)$, mostre que $\phi(t) = u(t) + v(t)$, em que u(t) é a solução geral do sistema homogêneo x' = P(t)x.
- 17. Considere o problema de valor inicial

$$\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{g}(\mathbf{t})$$
 $\mathbf{x}(0) = \mathbf{x}^0$

(a) Depois de olhar o Problema 15(c) na aula 06_5, mostre que

$$\mathbf{x} = \mathbf{\Phi}(t)\mathbf{x}^0 + \int_0^t \mathbf{\Phi}(t-s)\mathbf{g}(s) \, ds.$$

(b) Mostre, também, que

$$\mathbf{x} = \exp(\mathbf{A}t)\mathbf{x}^0 + \int_0^t \exp[\mathbf{A}(t-s)]\mathbf{g}(s) \, ds.$$

RESPOSTAS

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-t} + \frac{3}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^t - \frac{1}{4} \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^t + \begin{pmatrix} 1 \\ 2 \end{pmatrix} t - \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\mathbf{x} = c_1 \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix} e^{-2t} - \begin{pmatrix} 2/3 \\ 1/\sqrt{3} \end{pmatrix} e^t + \begin{pmatrix} -1 \\ 2/\sqrt{3} \end{pmatrix} e^{-t}$$

3.
$$\mathbf{x} = c_1 \begin{pmatrix} 5\cos t \\ 2\cos t + \sin t \end{pmatrix} + c_2 \begin{pmatrix} 5\sin t \\ -\cos t + 2\sin t \end{pmatrix} + \begin{pmatrix} 2\\ 1 \end{pmatrix} t\cos t - \begin{pmatrix} 1\\ 0 \end{pmatrix} t\sin t$$
$$-\begin{pmatrix} 1\\ 1 \end{pmatrix}\cos t$$

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ -4 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t} - \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-2t} + \frac{1}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{t}$$

5.
$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix} t - \frac{1}{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] - 2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} \ln t + \begin{pmatrix} 2 \\ 5 \end{pmatrix} t^{-1} - \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} t^{-2}$$

6.
$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{-5t} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} \ln t + \frac{8}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} t + \frac{4}{25} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

⁷.
$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t} + \frac{1}{4} \begin{pmatrix} 1 \\ -8 \end{pmatrix} e^{t}$$

8.
$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-t} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^t + 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^t$$

9.
$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t/2} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t} + \begin{pmatrix} \frac{5}{2} \\ \frac{3}{2} \end{pmatrix} t - \begin{pmatrix} \frac{17}{4} \\ \frac{15}{4} \end{pmatrix} + \begin{pmatrix} \frac{1}{6} \\ \frac{1}{2} \end{pmatrix} e^t$$

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} -\sqrt{2} \\ 1 \end{pmatrix} e^{-4t} - \frac{1}{3} \begin{pmatrix} \sqrt{2} - 1 \\ 2 - \sqrt{2} \end{pmatrix} t e^{-t} + \frac{1}{9} \begin{pmatrix} 2 + \sqrt{2} \\ -1 - \sqrt{2} \end{pmatrix} e^{-t}$$

11.
$$\mathbf{x} = c_1 \begin{pmatrix} 5\cos t \\ 2\cos t + \sin t \end{pmatrix} + c_2 \begin{pmatrix} 5\sin t \\ -\cos t + 2\sin t \end{pmatrix} + \begin{pmatrix} 0 \\ 1/2 \end{pmatrix} t\cos t - \begin{pmatrix} 5/2 \\ 1 \end{pmatrix} t\sin t$$
$$- \begin{pmatrix} 5/2 \\ 1 \end{pmatrix} \cos t$$

12.
$$\mathbf{x} = \left[\frac{1}{5}\ln(\sin t) - \ln(-\cos t) - \frac{2}{5}t + c_1\right] \begin{pmatrix} 5\cos t \\ 2\cos t + \sin t \end{pmatrix}$$

13. (a)
$$\Psi(t) = \begin{pmatrix} e^{-t/2} \cos \frac{1}{2}t & e^{-t/2} \sin \frac{1}{2}t \\ 4e^{-t/2} \sin \frac{1}{2}t & -4e^{-t/2} \cos \frac{1}{2}t \end{pmatrix}$$
 (b) $\mathbf{x} = e^{-t/2} \begin{pmatrix} \sin \frac{1}{2}t \\ 4 - 4\cos \frac{1}{2}t \end{pmatrix}$

14.
$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} t^{-1} - \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ 3 \end{pmatrix} t - \begin{pmatrix} 1 \\ 1 \end{pmatrix} t \ln t - \frac{1}{3} \begin{pmatrix} 4 \\ 3 \end{pmatrix} t^2$$

15.
$$\mathbf{x} = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} t^2 + c_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} t^{-1} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} t + \frac{1}{10} \begin{pmatrix} -2 \\ 1 \end{pmatrix} t^4 - \frac{1}{2} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$