LISTA 05_1 EQUAÇÕES DIFERENCIAIS Séries de potências Respostas no final Gabaritos na página do professor

Em cada um dos problemas de 1 a 8, determine o raio de convergência da série de potências dada

1.
$$\sum_{n=0}^{\infty} (x-3)^{n}$$
2.
$$\sum_{n=0}^{\infty} \frac{n}{2^{n}} x^{n}$$
3.
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{n!}$$
4.
$$\sum_{n=0}^{\infty} 2^{n} x^{n}$$
5.
$$\sum_{n=1}^{\infty} \frac{(2x+1)^{n}}{n^{2}}$$
6.
$$\sum_{n=1}^{\infty} \frac{(x-x_{0})^{n}}{n}$$
7.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2} (x+2)^{n}}{3^{n}}$$
8.
$$\sum_{n=1}^{\infty} \frac{n! x^{n}}{n^{n}}$$

Em cada um dos problemas de 9 a 16, determine a série de Taylor da função dada em torno do ponto x_0 . Determine, também, o raio de convergência da série.

```
9. sen x, x_0 = 0.
```

10.
$$e^x$$
, $x_0 = 0$.

11.
$$x$$
, $x_0 = 1$

12.
$$x^2$$
, $x_0 = -1$

13.
$$\ln x$$
, $x_0 = 1$

$$\frac{1}{1+x}, \qquad x_0 = 0$$

15.
$$\frac{1}{1-x}$$
, $x_0 = 0$

14.
$$\frac{1}{1+x}$$
, $x_0 = 0$
15. $\frac{1}{1-x}$, $x_0 = 0$
16. $\frac{1}{1-x}$, $x_0 = 2$

- 17. Dado que $y = \sum_{n=0}^{\infty} nx^n$ calcule y' e y'' e escreva os quatro primeiros fermos de cada uma das séries, assim como o coeficiente de xⁿ no termo geral.
- 18. Dado que $y = \sum_{n=0}^{\infty} a_n x^n$, calcule y' e y'' e escreva os quatro primeiros termos de cada uma das séries, assim como o coeficiente de xⁿ no termo geral. Mostre que, se y'' = y, então os coeficientes a_0 e a_1 são arbitrários; determine a₂ e a₃ em função de a₀ e a₁. Mostre que $a_{n+2} = a_n/[(n+2)(n+1)], n = 0, 1, 2, 3, ...$

Em cada um dos Problemas 19 e 20, verifique a equação dada.

19.
$$\sum_{n=0}^{\infty} a_n (x-1)^{n+1} = \sum_{n=1}^{\infty} a_{n-1} (x-1)^n$$

19.
$$\sum_{n=0}^{\infty} a_n (x-1)^{n+1} = \sum_{n=1}^{\infty} a_{n-1} (x-1)^n$$
20.
$$\sum_{k=0}^{\infty} a_{k+1} x^k + \sum_{k=0}^{\infty} a_k x^{k+1} = a_1 + \sum_{k=1}^{\infty} (a_{k+1} + a_{k-1}) x^k$$

Em cada um dos problemas de 21 a 27, escreva a expressão dada como uma série cujo termo geral envolve xⁿ.

21.
$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$$
22.
$$\sum_{n=0}^{\infty} a_n x^{n+2}$$
23.
$$x \sum_{n=1}^{\infty} n a_n x^{n-1} + \sum_{k=0}^{\infty} a_k x^k$$
24.
$$(1-x^2) \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$$
25.
$$\sum_{m=2}^{\infty} m(m-1)a_m x^{m-2} + x \sum_{k=1}^{\infty} k a_k x^{k-1}$$
26.
$$\sum_{n=1}^{\infty} n a_n x^{n-1} + x \sum_{n=0}^{\infty} a_n x^n$$
27.
$$x \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + \sum_{n=0}^{\infty} a_n x^n$$

RESPOSTAS

1.
$$\rho = 1$$

2.
$$\rho = 2$$

3.
$$\rho = \infty$$

4.
$$\rho = \frac{1}{2}$$

5.
$$\rho = \frac{1}{2}$$

6.
$$\rho = 1$$

7.
$$\rho = 3$$

8.
$$\rho = e$$

9.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \quad \rho = \infty$$
10.
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad \rho = \infty$$

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad \rho = \infty$$

11.
$$1 + (x - 1), \quad \rho = \infty$$

12.
$$1 - 2(x+1) + (x+1)^2$$
, $\rho = \infty$

13.
$$\sum_{\substack{n=1\\14.\\ n=0}}^{\infty} (-1)^{n+1} \frac{(x-1)^n}{n}, \quad \rho = 1$$

14.
$$\sum_{n=0}^{\infty} (-1)^n x^n$$
, $\rho = 1$

15.
$$\sum_{n=0}^{\infty} x^n, \quad \rho = 1$$

16.
$$\sum_{n=0}^{n=0} (-1)^{n+1} (x-2)^n, \quad \rho = 1$$

17.
$$y' = 1 + 2^2x + 3^2x^2 + 4^2x^3 + \dots + (n+1)^2x^n + \dots$$

 $y'' = 2^2 + 3^2 \cdot 2x + 4^2 \cdot 3x^2 + 5^2 \cdot 4x^3 + \dots + (n+2)^2(n+1)x^n + \dots$

18.
$$y' = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + \dots + (n+1)a_{n+1}x^n + \dots$$

$$= \sum_{n=1}^{\infty} na_n x^{n-1} = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$$

$$y'' = \sum_{n=2}^{n=1} n(n-1)a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n + \cdots$$
$$= \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n$$

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n$$

22.
$$\sum_{n=2}^{n=0} a_{n-2} x^n$$

$$\sum_{n=2}^{\infty} (n+1)a_n x^n$$

24.
$$\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} - n(n-1)a_n]x^n$$

25.
$$\sum_{n=0}^{n=0} [(n+2)(n+1)a_{n+2} + na_n]x^n$$

26.
$$a_1 + \sum_{n=1}^{\infty} [(n+1)a_{n+1} + a_{n-1}]x^n$$

27.
$$\sum_{n=0}^{n-1} [(n+1)na_{n+1} + a_n]x^n$$