CHAPTER

4

Higher Order Linear Equations

2. We will first rewrite the equation as y"’ + (sint/t)y” + (3/t)y = cost/t. Since
the coefficient functions p (t) = sint/t, p2(t) = 3/t and g(t) = cost/t are continuous
for all ¢ # 0, the solution is sure to exist in the intervals (—oo,0) and (0, c0).

4. The coefficients are continuous everywhere, but the function ¢g(t) = In ¢ is defined
and continuous only on the interval (0, c0). Hence solutions are defined for positive

reals.
8. We have
20—3 22 4+1 324t
W(fi, fo, f3) =| 2 4t 6t+1|=0
0 4 6

for all t. Thus by the extension of Theorem 3.3.1 the given functions are linearly
dependent. To find a linear relation we have c; (2t — 3) + c2(2t% + 1) + c3(3t2 +t) =
(2¢2 + 3¢3)t? + (2¢1 + c3)t + (—=3¢1 + c2) = 0, which is zero when the coefficients
are zero. Solving, we find ¢; = 1, co = 3 and ¢3 = —2. This implies that (2t — 3) +
3(2t2 +1) —2(3t2 +t) = 0.

13. By direct substitution, for y; = ! we get 37" + 2y} — v} — 2y1 = ! + 2¢e* — et —
2et =0, for yo = et we get Yy +2y5 —yh —2ys = —e P +2e et -2t =0
and for y3 = e =2 we get y§' + 24 — yh — 2yz = —8e 2 + 8e 72 4+ 2e72 — 272 =

85
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0. Therefore, y1, y2, y3 are all solutions of the differential equation. We now compute
their Wronskian. We have

-
|
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|
N
g

e e e 1 1 1
Wy, y2,y3) = |[et —e™t —2e % =21 —1 —2|=—6e"%.
et et 42t 1 1 4

17. We note first that (sin®¢)’ = 2sint cost = sin2t. Then

5 sin’t cos 2t
W(5,sin’t,cos2t) = [0 sin2t —2sin2t| = 5(—4sin 2t cos 2t + 4 cos 2t sin 2t) = 0.
0 2cos2t —4cos2t

Also, sin?t = (1 — cos2t)/2 = (1/10)5 + (—1/2) cos 2t and hence sin®t is a linear
combination of 5 and cos2t. Thus the functions are linearly dependent and their
Wronskian is zero.

19.(a) Note that d*(t")/dtF =n(n —1)...(n —k+ 1)t" "% fork =1,2,...,n. Thus
Lit"l =aon!+ai[n(n—1)...2]t+... ap_1nt" ' +a, t"

(b) We have d¥(e™)/dtk =rke for k=0,1,2,.... Hence Lle"] = agr"e™ +
ar" e+ tap_ret fag et = lagr" a4+ dan_ 17 +ay e

(c) Set y = e, and substitute into the ODE. It follows that r* — 5r% +4 = 0, with
r = 41,4 2. Furthermore, W (e!,e~t, e%, e=2t) = 72.

23. After writing the equation in standard form, observe that p;(t) = 2/t. Based
on the results in Problem 20, we find that W’ = (—2/t)W, and hence W = ¢/t2.

25.(a) On the interval (—1,0), f(t) = t?|t| = —t3 = —g(t), and on the interval (0, 1),
f(t) = t%|t| = t3 = g(t). This shows that on these intervals the functions are linearly
dependent.

(b) On the interval (—1,1) these two functions are linearly independent, because
if ¢1f(t) 4+ cag(t) = 0 for every t, then for t = 1/2 we obtain ¢; + ¢o = 0 and for
t =—1/2 we get ¢; — co = 0, which implies that ¢; = ¢ = 0.

(c) The Wronskian is

21t 3

st 32| = 3tht| — 3th|t] = 0.

W(f,9)(t) =

27. Differentiating ¢! and substituting into the differential equation we verify that
y = e’ is a solution: (2 —t)et + (2t — 3)e! —te! + e’ = 0. Now, as in Problem 26,
we let y = v(t)et. Differentiating three times and substituting into the differential
equation yields (2 — t)e'v"” + (3 — t)e'v” = 0. Dividing by (2 — t)e’ and letting w =
v"” we obtain the first order separable equation v’ = —(t — 3)w/(t — 2) = (-1 +
1/(t — 2))w. Separating t and w, integrating, and then solving for w yields w =
v =t — 2)e_t. Integrating this twice the gives v = cite™ + cot + c3 so that
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y = vel = cit + cate + caet, which is the complete solution, since it contains the
given y; (t) and three constants.

2. The magnitude of —1 + /3 i is R = v/4 = 2 and the polar angle is 27/3. Hence
the polar form is given by —1 4 v/3 i = 2e>/3%. The angle 6 is only determined
up to an additive integer multiple of 2.

8. Writing 1 — 4 in the form Re”, we have R = /2 and § = —7/4. Thus 1 —i =
V2 (=7/42mT) (where m is any integer), and hence (1 —)/2 = /2 ei(=m/8+mm),
We obtain the two square roots by setting m = 0,1. They are v/2e /% and

Y2 eiTr/8,

12. The characteristic equation is 3 — 3r? +3r — 1 = (r — 1)3 = 0. The roots are
r=1,1,1. The roots are repeated, hence y = c1e? + cote? + cst?et.

15. The characteristic equation is 7% 41 = 0. The roots are given by r = (—1)'/¢,
that is, the six sixth roots of —1. They are e~ ™/6+m7i/3 'y — 0 1,....5. Explic-
itly, r = (V3 —4)/2, (V3 +1)/2, i, —i, (—/3 +1)/2, (—v3 —i)/2. Note that
there are three pairs of conjugate roots. Thus y = ¢Y3/2 [¢; cos (t/2) + ¢y sin (¢/2)] +
c3cos t + cysin te= V32 [¢5 cos (t/2) + cg sin (£/2)].

23. The characteristic equation is 7% — 5r2 +3r+1=0. Using the procedure
suggested following Eq.(12) we try, since a,, = ag = 1, r = 1 as a root and find that
indeed it is. Factoring out 7 — 1 we are then left with 72 — 4r — 1 = 0, which has
the roots 2 & v/5. Hence the general solution is y = ciet + coe2+V3t 4 c5e(2=VE)E,

27. The characteristic equation is 12r% 4+ 3172 + 7572 4 37r +5=0. It can be
shown (with the aid of a mathematical software) that 12r* + 31r% + 75r% + 37r +
5= (3r + 1)(4r + 1)(r? + 2r + 5). This implies that the roots are r = —1/3, —1/4,
and —1 =+ 2i. The solution is y = c1e /3 + coe™t/* 4 c3e7t cos 2t + cqe~t sin 2t.

29. The characteristic equation is r3 + 7 = 0, with roots » =0, +4i. Hence the
general solution is y(t) = ¢; + ca cos t + ¢ sin ¢ . Invoking the initial conditions, we
obtain the system of equations ¢; + co =0, ¢s =1, —cy = 2, with solution ¢; = 2,
co = —2, c3 =1. Therefore the solution of the initial value problem is y(t) =
2 — 2cos t + sin t, which oscillates about y =2 as t — .



88

Chapter 4. Higher Order Linear Equations

s\J 10

1'5 \/ 21) \2/'5

z

30. The characteristic equation is r*+1 =0, with roots r = i\/i/2 +iv2/2,
Hence the general solution is y(t) = creV2/2 cos(v/2t/2) + cae¥2/2sin(v/2t/2) +
cse™ V22 cos(v/2t/2) + caeV21/2 5in(v/2t/2). Invoking the initial conditions, we
obtain that the solution of the initial value problem is y(t) = (—1/2)eY2t/2 sin(v/2t/2) +
(1/ 2)@“/575/ 2sin(v/2t/2), which oscillates with an exponentially growing amplitude

as t — oo.

80
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31. The characteristic equation is 7* — 472 + 2 =0, with roots r =0, 0, 2, 2.
Hence the general solution is y(t) = c; + caot + cze?’ + cyte?’. Invoking the initial
conditions, we obtain that the solution of the initial value problem is y(t) = —3 + 2t,
which grows without bound as ¢ — oco.

34. The characteristic equation is 4r3 +r +5=0, with roots r = —1, 1/2 +.
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Hence the general solution is y(t) = cie™ + cpe'/? cost + czet/?sint. Invoking the
initial conditions, we obtain that the solution of the initial value problem is y(t) =
(2/13)e~* + €t/2[(24/13) cos t + (3/13) sin t], which oscillates with an exponentially
growing amplitude as t — oo.

40 o

20 A

~20 -

—40 4

~60

37. The approach for solving the differential equation would normally yield y(¢) =
c1cost + cosint + cse’ + cget as the solution. Since cosht = (e +e7")/2 and
sinht = (e —e7%)/2, y(t) can be written as y(t) = c¢; cost + casint + c3 cosht +
cy sinht, where c3 = c5 + cg and ¢4 = ¢c5 — ¢cg. It is more convenient to use this
form because the initial conditions are given at ¢ =0, and the functions cosht¢
and sinht and all their derivatives are 0 or 1 at ¢ = 0, so the algebra is simpli-
fied. If y(0) =0, ¥'(0) =0, y”’(0) =1 and y"’(0) = 1, then the resulting system of
equations is ¢ +¢3 =0, ca +¢c4 =0, —c1 + c3 = 1, and —cs 4+ ¢4 = 1, which yields
immediately that ¢; = —1/2, ¢3 = 1/2, ¢ = —1/2 and ¢4 = 1/2, so the solution is
y(t) = —(1/2)(cost + sint) + (1/2)(cosh t + sinh t)

38(&) Since P1 (t) = O7 W = Ceffo dt = cC.
(b) W(et, et cos t,sin t) = —8.
(¢) W (cosh t,sinh ¢, cos t,sin t) = 4.

39.(a) As in Section 3.7, the force that the spring designated by k; exerts on mass
my is —3u;. By an analysis similar to that shown in Section 3.7, the middle spring
exerts a force of —2(u; —ug) on mass m; and a force of —2(us —uq) on mass
mz. Thus Newton’s law gives myu} = —3uy — 2(u1 — ug) and moul = —2(ug — uy),
where u; and ug are measured from their equilibrium positions. Setting the masses
equal to 1 and rewriting each equation yields Eq.(i). In all cases the positive
direction is taken in the direction shown in Figure 4.2.4.

(b) Clearly, us = uf/2 4+ (5/2)uy, so by differentiating this twice and using the other
equation uf + 2us = 2uy we get that uf”’ /2 + (5/2)uf + uf 4+ 5uy = 2uq, which turns
into u{” + 7uf + 6u; = 0 after a multiplication by 2. The characteristic equation
is r* +7r2+6=0, or (r>+1)(r? +6) = 0. Thus the general solution of Eq.(ii) is
up(t) = ¢q cost + casint + c3 cos V6t + ¢4 sin /6.
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(c) We see that uf = 2uy — 5uq, so uf(0) =2-2—5-1= —1 and by differentiating
the previous equation, v}’ = 2u}, — 5uj, so u{’(0) = 0. Substituting these initial
conditions into the previous general solution we obtain the solution u;(t) = cost.
Also, 2ug = uf 4+ 5uy =4 cost so uz(t) = 2cost.

(d) As in part (¢), uf = 2us — 5uy, souf(0) =2-1—-5-(=2) =12 and u}’ = 2u} —
5u}, so uf’(0) = 0. Substituting these initial conditions into the general solution
we obtain the solution ui(t) = —2cosv/6t. Then 2uy = u/ + 5u; = 2cos /6t so

us(t) = cos /6t.
()

(a) Solutions from part (c) (b) Solutions from part (d)

1. First solve the homogeneous equation. The characteristic equation for this
is 73 —r2 —7r4+1=0, the roots are r = —1, 1, 1, so y.(t) = cre”! + coe’ + cstel.
Using the superposition principle, we can write a particular solution as the sum
of the particular solutions corresponding to the differential equations y""’ — 3" —
Yy +y=2e""tand y" —y" —y +y=3. Our initial choice for Y;(t) is Ae™?, but
because this is a solution of the homogeneous equation we need Y;(t) = Ate~'. The
second equation gives us Y2(t) = B. The constants A and B can be determined by
substituting into the individual equations. We obtain A = 1/2 and B = 3. Thus

the general solution is y(t) = cre™" + cae’ + cste! +te™ /2 + 3.

5. The characteristic equation is r* — 4r%2 = r2(r2 —4) = 0, so y.(t) = c¢1 + cot +
cze™ 2! + cqe®. For the particular solution corresponding to t? we assume Y;(t) =
t2(At? 4+ Bt + C) and for the particular solution corresponding to ef we assume
Y5(t) = Det. The constants A, B, C, and D can be determined by substituting
into the individual equations. We obtain that the general solution is y(t) = ¢1 +
cot + cge™ 2 + cqe?t — t4/48 — 12 /16 — €' /3.
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9. The characteristic equation for the related homogeneous differential equation
is 73 + 47 = 0 with roots r = 0, £2i. Hence y.(t) = ¢1 + c2 cos 2t + c3sin2t. The
initial choice for Y (¢) is At + B, but because B is a solution of the homogeneous
equation we assume Y (t) = t(At + B). A and B are found by substituting this
into the differential equation, which gives us A = 1/8 and B = 0. Thus the general
solution is y = ¢ + co cos 2t + c3sin 2t + t2/8. Applying the initial conditions at
this point we obtain that y(0) = ¢; +c2 =0, ¢/ (0) = 2¢3 = 0 and y”(0) = —4ea +
1/4 = 1. This gives ¢; = —3/16, ¢; = 3/16 and ¢3 = 0. The solution is y = 3/16 —
(3/16) cos 2t + t2 /8. We can see that for t = 7,27, ... the graph will be tangent to
t2/8 and for large t values the graph will be approximated by t2/8.

13. The characteristic equation for the homogeneous equation is 73 — 2r2 +r = 0,
with roots 7 =0, 1, 1. Hence the complementary solution is y.(t) = ¢ + cae! +
cstel. We consider the differential equations y”’ — 24" +14' =t3 and y"' — 2y" +
y' = 2¢' separately. Our initial choice for a particular solution Y; of the first
equation is Aot + Ait? + Aot + As: but since a constant is a solution of the ho-
mogeneous equation we must multiply this by t. Thus Yi(t) = t(Agt3 + A% +
Agt + A3). For the second equation we first choose Ys(t) = Be!, but since both
e? and te! are solutions of the homogeneous equation, we multiply by t? to ob-
tain Ya(t) = Bt2e!. Then Y (t) = Yi(t) + Ya(t) by the superposition principle and
y(t) = ye(t) + Y (2).

17. The characteristic equation for the homogeneous equation is r* — r3 — r2 4+ =
r(r —1)(r? — 1) =0, with roots r =0, 1, 1, —1. Hence the complementary solu-
tion is y.(t) = c1 + cae™t + cgel + cutet.  We consider the differential equations
y@ — " — " 4y =2 +4 and y —y” —y” +y' = tsint separately. Our ini-
tial choice for a particular solution Y; of the first equation is Agt? 4+ At + Ag;
but since a constant is a solution of the homogeneous equation we must multi-
ply this by t. Thus Y;(t) = t(Agt? + Ast + Az). For the second equation our ini-
tial choice Y3(t) = (Bot + By ) cost + (Cot 4+ C1) sint does not need to be modified.
Thus Y (¢) = Y1(t) + Y2(¢) by the superposition principle and y(t) = y.(t) + Y (¢).

20. We get (D —a)(D—0b)f=(D—a)(Df —bf)=D?f —(a+b)Df +abf and
(D—=0b)(D—a)f=(D-0b)(Df —af)=D?*f — (b+a)Df +baf. Thus we find that
the given equation holds for any function f.
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22. (13) The equation in Problem 13 can be written as D(D — 1)%y = 3 + 2¢'.
Since D* annihilates t3 and D — 1 annihilates 2¢f, we have D°(D — 1)3y = 0, which
corresponds to Eq.(ii) of Problem 21. The solution of this equation is y(t) =
At + Aot3 + Agt? + Agt + As + (Bit? + Baot + Bs)el. Since A5 and (Bot + Bs)e!
are solutions of the homogeneous equation related to the original differential equa-
tion, they may be deleted and thus Y (t) = At* + Agt? + Ast? + Ayt + Bit2el.

22. (14) If y = te™*, then Dy = —te™* + e~ and D?y = te~* — 2e~!, which means
(D+1)%y=(D?>+2D+1)y =0 and thus (D + 1)? annihilates te~!. Likewise,
D? — 1 annihilates 2cost. Thus (D + 1)2(D? + 1) annihilates the right side of the
differential equation.

22. (17) D3(D?* + 1)? annihilates the right side of the differential equation.

1. The characteristic equation is (72 + 1) = 0. Hence the homogeneous solution is
Ye(t) = c1 + cacost + czsint. The Wronskian is evaluated as W(1,cost,sint) = 1.
Now compute the three determinants

0 cost sint 1 0 sint
Wi(t) =10 —sint cost |=1, Wa(t)=|0 0 cost | = —cost,
1 —cost —sint 0 1 -—sint
1 cost O
Ws(t) =10 —sint 0| = —sint.
0 —cost 1
The solution of the system of Equations (11) is
tant W1 (t) tant W2 (t) .
ul’(t):w:tant, Ué(t):W:—SIHt,
tant Ws(t
ug(t) = tant Ws(t) _ —sin?t/ cost.

W (t)

Hence u;(t) = —In(cost), ua(t) = cost, us(t) = sint — In(sect 4+ tant). The partic-
ular solution becomes Y (t) = —In(cost) + 1 —sintIn(sect 4 tant), since sin®t +
cos?’t = 1. The constant is a solution of the homogeneous equation, therefore the
general solution is

y(t) = c1 + cacost + cgsint — In(cost) — sintIn(sect + tant).

4. Similarly to Problem 1, the characteristic equation is 7(r? + 1) = 0. Hence the
homogeneous solution is y.(t) = ¢1 + cg cost + c3sint. The Wronskian is evaluated
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as W(1,cost,sint) = 1. Now compute the three determinants

0 cost sint 1 0 sint
Wi(t) =10 —sint cost |=1, Wa(t)=|0 0 cost | = —cost,
1 —cost —sint 0 1 —sint
1 cost O
W5(t) =10 —sint 0| = —sint.
0 —cost 1
The solution of the system of Equations (11) is
sect Wi (t) sect Wa(t)
ui(t) = W) sect, uy(t) = ————> =1,

W (t)

sect Ws(t)

us(t) = W) —sint/ cost.

Hence uq(t) = In(sect + tant), us(t) = —t, uz(t) = In(cost). The particular solu-
tion becomes Y (t) = In(sect + tant) — t cost + sint In(cost).

5. The characteristic equation is 73 —r% +r —1 = (r — 1)(r?> + 1) = 0. Hence the
homogeneous solution is y.(t) = ciret + cocost + c3sint. The Wronskian is evalu-
ated as W (e!,cost,sint) = 2¢*. (This also can be found by using Abel’s identity:
W(t) = ce” I dt — et where W(0) = 2, so ¢ = 2 and again W (t) = 2¢'.) Now
compute the three determinants

0 cost sint t 0 sint

e
Wi(t)=1|0 —sint cost |=1, Wy(t)=|e! 0 cost |=e'(sint—cost),
1 —cost —sint et 1 —sint
et cost 0
Ws(t) = |e! —sint 0] = —e’(sint + cost).
et —cost 1

The solution of the system of equations (10) is

e"tsint Wo(t) e !(sint — sint cost)

e~tsintWi(t) e ?tsint

‘) e tsint Ws(t) e t(sin®t + sint cost)

U4 = = — .

3 W (t) 2

Hence u(t) = —(1/10)e~2(cost + 2sint), ua(t) = —(1/4)e~ + (3/20)e~* cos 2t —
(1/20) sin 2, uz(t) = e~ */4+ (1/20)e "t cos 2t + (3/20)e ! sin 2¢. Substitution into
Y = ujet + us cost + uzsint yields the desired particular solution.

7. Similarly to Problem 5, the characteristic equation for the differential equa-
tion is 73 —r? +7r —1=(r —1)(r> +1) = 0. Hence the homogeneous solution is
ye(t) = cre’ + cycost + c3sint. The Wronskian is evaluated as W (e!, cost,sint) =
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2¢t. (Also, as in Problem 5, this can be found by using Abel’s identity.) Now
compute the three determinants

0 cost  sint et 0 sint
Wi(t) =1|0 —sint cost |=1, Way(t)=|e! 0 cost |=-e'(sint— cost),
1 —cost —sint e’ 1 —sint
et cost 0
Ws(t) = |[e¢ —sint 0| = —e'(sint + cost).
et —cost 1

The solution of the system of equations (10) is

Wl(t) = sect Wi (t) _ (fts,(e(:t7 wl(t) = sect Wa(t) _ sect(sint—cost)’
W(t) 2 W(t) B)

, sect Ws(t) sect(sint + cost)

Hence uy(t) = (1/2) ftto e %secsds, us(t) = —t/2 — In(cost)/2, and us(t) = —t/2 +
In(cost)/2. Substitution into Y = uje’ + ug cost + uzsint yields the desired par-
ticular solution.

11. Since the differential equation is the same as in Problem 7. we may use the
complete solution from there, with ¢ = 0. Thus y(0) =1 +c2 =2, ¥y’ (0) =1 +
c3—1/24+1/2=—-1andy”(0) =c1 —ca+1/2—-141/2=1. A computer algebra
system may be used to find the respective derivatives. Note that the solution is
valid only for 0 < ¢ < 7/2, where we see the vertical asymptote.

14. Using Problem 7 (or Problem 5) again, we get that Y = uje! + uscost +
ug sint, where

g(t) Wa(t)  g(t)(sint — cost)

g(t) Ws(t) _ g(t)(sint + cost)
W (t) 2 '
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Thus we obtain that

1 t t
Y(t) = 5[et/t e %g(s)ds+ cost/t (sins — coss)g(s)ds
0 0

t
- sint/ (sin s + cos s)g(s) ds].
to

We can move e, cost and sint inside the integrals and use trigonometric identities

to obtain the desired formula.

16. The characteristic equation for the differential equation is 3 — 3r2 +3r — 1 =
(r — 1) = 0. Hence the homogeneous solution is y.(t) = c1e® + cate’ + czt?et. The
Wronskian is evaluated as W (e!, te!, t?e!) = 2e3!. Now compute the three determi-
nants

0 tet t2et
Wi(t) =10 €' +tet et +t2et | =t2e?,
1 2et +tet 2et + 4dtet + t3e!
et 0 t2et
Wa(t) = et 0 2tet +t%et | = —2te?!,
et 1 2et + dtet + t3et
et tet 0
Wa(t) = et et +tet 0] =e*.
et 2et +tet 1

The solution of the system of equations (10) is

26—t
ity = SR AT gy~ SR e,

Thus we obtain that

¢ 2,—s ¢ ¢ —s
Y(t) :et/ mds—tet/ g(s)se™? ds+t2et/ ‘Q(S)Teds:

to 2 to to

_ /t g(s)et=5(s% — 2ts + t2) s — /t g(s)e!=%(s —t)? s,

2 " 2

If g(t) = t 2!, then this formula gives

t —2_ s, t—s 2 t =2 2 t 2

s (s — 1) t/ s74(s—1) t/ 1t t
Y(t) = ds = — 7 ds = - — — —— ds.
(t) /to 5 s=e \ 5 s=e 2 s+252 s

Note that terms involving t; become part of the complementary solution, so we
obtain that Y (t) = —te! Int only.
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