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Introduction

1.1

2.

For y > 3/2, the slopes are positive, therefore the solutions increase. For y < 3/2,
the slopes are negative, therefore, the solutions decrease. As a result, y diverges
from 3/2 as t→∞ if y(0) 6= 3/2.
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4.

For y > −1/2, the slopes are negative, therefore the solutions decrease. For y <
−1/2, the slopes are positive, therefore, the solutions increase. As a result, y →
−1/2 as t→∞.

7. For the solutions to satisfy y → 3 as t→∞, we need y′ < 0 for y > 3 and y′ > 0
for y < 3. The equation y′ = 3− y satisfies these conditions. (This is not unique
as there are other possible answers, such as y′ = 6− 2y.)

9. For solutions other than y(t) = 2 to diverge from y = 2, y(t) must be an increas-
ing function for y > 2, and a decreasing function for y < 2. The simplest differential
equation whose solutions satisfy these criteria is y ′ = y − 2.

11.

For y = 0 and y = 4 we have y′ = 0 and thus y = 0 and y = 4 are equilibrium
solutions. For y > 4, y′ < 0 so if y(0) > 4 the solution approaches y = 4 from
above. If 0 < y(0) < 4, then y′ > 0 and the solutions ”grow” to y = 4 as t→∞.
For y(0) < 0 we see that y′ < 0 and the solutions diverge from 0.
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13.

Since y′ = y2, y = 0 is the only equilibrium solution and y′ > 0 for all y. Thus y → 0
if the initial value is negative; y diverges from 0 if the initial value is positive.

16. From Figure 1.1.6 we can see that y = 2 is an equilibrium solution and thus
(c) and (j) are the only possible differential equations to consider. Since dy/dt > 0
for y > 2, and dy/dt < 0 for y < 2 we conclude that (c) is the correct answer:
y ′ = y − 2.

19. From Figure 1.1.9 we can see that y = 0 and y = 3 are equilibrium solutions,
so (e) and (h) are the only possible differential equations. Furthermore, we have
dy/dt < 0 for y > 3 and for y < 0, and dy/dt > 0 for 0 < y < 3. This tells us that
(h) is the desired differential equation: y ′ = y (3− y).

21.(a) Let q(t) denote the amount of chemical in the pond at time t. The chem-
ical q will be measured in grams and the time t will be measured in hours. The
rate at which the chemical is entering the pond is given by 300 gallons/hour ·.01
grams/gallons = 300 · 10−2 grams/hour. The rate at which the chemical leaves
the pond is given by 300 gallons/hour ·q/1, 000, 000 grams/gallons = 300 · q10−6

grams/hour. Thus the differential equation is given by dq/dt = 300(10−2 − q10−6).

(b) The equilibrium solution occurs when q′ = 0, or q = 104 grams. Since q′ > 0
for q < 104 gm and q′ < 0 for q > 104 gm, all solutions approach the equilibrium
solution independent of the amount present at t = 0.

22. The surface area of a spherical raindrop of radius r is given by S = 4πr2. The
volume of a spherical raindrop is given by V = 4πr3/3. Therefore, we see that the
surface area S = cV 2/3 for some constant c. If the raindrop evaporates at a rate
proportional to its surface area, then dV/dt = −kV 2/3 for some k > 0.

25.(a) Following the discussion in the text, the differential equation is m(dv/dt) =
mg − γ v2, or equivalently, dv/dt = g − γv2/m.

(b) After a long time, dv/dt ≈ 0. Hence the object attains a terminal velocity given
by v∞ =

√
mg/γ .

(c) Using the relation γ v 2
∞ = mg, the required drag coefficient is γ = 2/49 kg/s.
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(d)

28.

Solutions appear to diverge from y = 0.

29.

All solutions (except y(0) = −1/4) diverge from the solution y(t) = −t/2− 1/4 and
approach ±∞.
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31.

Solutions approach −∞ or are asymptotic to
√

2t− 1.

1.2

1.(a) The differential equation can be rewritten as

dy

5− y
= dt .

Integrating both sides of this equation results in − ln |5− y| = t+ c1, or equiva-
lently, 5− y = c e−t. Applying the initial condition y(0) = y0 results in the specifi-
cation of the constant as c = 5− y0. Hence the solution is y(t) = 5 + (y0 − 5)e−t.

All solutions appear to converge to the equilibrium solution y(t) = 5.

(b) The differential equation can be rewritten as

dy

5− 2y
= dt .

Integrating both sides of this equation results in −(1/2) ln |5− 2y| = t+ c1, or
equivalently, 5− 2y = c e−2t. Applying the initial condition y(0) = y0 results in the
specification of the constant as c = 5− 2y0. Hence y(t) = 5/2 + (y0 − 5/2)e−2t.
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All solutions appear to converge to the equilibrium solution y(t) = 5/2, at a faster
rate than in part (a).

(c) Rewrite the differential equation as

dy

10− 2y
= dt .

Integrating both sides of this equation results in −(1/2) ln |10− 2y| = t+ c1, or
equivalently, 5− y = c e−2t. Applying the initial condition y(0) = y0 results in the
specification of the constant as c = 5− y0. Hence y(t) = 5 + (y0 − 5)e−2t.

All solutions appear to converge to the equilibrium solution y(t) = 5, at a faster
rate than in part (a), and at the same rate as in part (b).

2.(a) The differential equation can be rewritten as

dy

y − 5
= dt .

Integrating both sides of this equation results in ln |y − 5| = t+ c1, or equivalently,
y − 5 = c et. Applying the initial condition y(0) = y0 results in the specification of
the constant as c = y0 − 5. Hence the solution is y(t) = 5 + (y0 − 5)et.
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All solutions appear to diverge from the equilibrium solution y(t) = 5.

(b) Rewrite the differential equation as

dy

2y − 5
= dt .

Integrating both sides of this equation results in (1/2) ln |2y − 5| = t+ c1, or equiv-
alently, 2y − 5 = c e2t. Applying the initial condition y(0) = y0 results in the speci-
fication of the constant as c = 2y0 − 5. So the solution is y(t) = (y0 − 5/2)e2t + 5/2.

All solutions appear to diverge from the equilibrium solution y(t) = 5/2.

(c) The differential equation can be rewritten as

dy

2y − 10
= dt .

Integrating both sides of this equation results in (1/2) ln |2y − 10| = t+ c1, or equiv-
alently, y − 5 = c e2t. Applying the initial condition y(0) = y0 results in the speci-
fication of the constant as c = y0 − 5. Hence the solution is y(t) = 5 + (y0 − 5)e2t.
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All solutions appear to diverge from the equilibrium solution y(t) = 5.

3.(a) Rewrite the differential equation as

dy

b− ay
= dt ,

which is valid for y 6= b /a. Integrating both sides results in −(1/a) ln |b− ay| =
t+ c1, or equivalently, b− ay = c e−at. Hence the general solution is y(t) = (b−
c e−at)/a. Note that if y = b/a, then dy/dt = 0, and y(t) = b/a is an equilibrium
solution.

(b)

(c) (i) As a increases, the equilibrium solution gets closer to y(t) = 0, from above.
The convergence rate of all solutions is a. As a increases, the solutions converge to
the equilibrium solution quicker.

(ii) As b increases, then the equilibrium solution y(t) = b/a also becomes larger.
In this case, the convergence rate remains the same.

(iii) If a and b both increase but b/a =constant, then the equilibrium solution
y(t) = b/a remains the same, but the convergence rate of all solutions increases.

5.(a) Rewrite Eq.(ii) as (1/y)dy/dt = a and thus ln |y| = at+ C, or y1 = ceat.

(b) If y = y1(t) + k, then dy/dt = dy1/dt. Substituting both these into Eq.(i) we
get dy1/dt = a(y1 + k)− b. Since dy1/dt = ay1, this leaves ak − b = 0 and thus
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k = b/a. Hence y = y1(t) + b/a is the solution to Eq(i).

(c) Substitution of y1 = ceat shows this is the same as that given in Eq.(17).

7.(a) The general solution is p(t) = 900 + c et/2, that is, p(t) = 900 + (p0 − 900)et/2.
With p0 = 850, the specific solution becomes p(t) = 900− 50et/2. This solution is a
decreasing exponential, and hence the time of extinction is equal to the number of
months it takes, say tf , for the population to reach zero. Solving 900− 50etf/2 = 0,
we find that tf = 2 ln(900/50) ≈ 5.78 months.

(b) The solution, p(t) = 900 + (p0 − 900)et/2, is a decreasing exponential as long as
p0 < 900. Hence 900 + (p0 − 900)etf/2 = 0 has only one root, given by

tf = 2 ln(
900

900− p0
) months.

(c) The answer in part (b) is a general equation relating time of extinction to
the value of the initial population. Setting tf = 12 months, the equation may be
written as 900/(900− p0) = e6, which has solution p0 ≈ 897.8. Since p0 is the initial
population, the appropriate answer is p0 = 898 mice.

9.(a) The solution to this problem is given by Eq.(26), which has a limiting velocity
of 49 m/s. Substituting v = 48.02 (which is 98% of 49) into Eq.(26) yields et/5 =
0.02. Solving for t we have t = −5 ln(0.02) = 19.56 s.

(b) Use Eq.(29) with t = 19.56.

11.(a) If the drag force is proportional to v2 then F = 98− kv2 is the net force
acting on the falling mass (m = 10 kg). Thus 10dv/dt = 98− kv2, which has a
limiting velocity of v2 = 98/k. Setting v2 = 492 gives k = 98/492 and hence dv/dt =
(492 − v2)/(10/k) = (492 − v2)/245.

(b) From part (a) we have dv/(492 − v2) = (1/245)dt, which after integration yields
(1/49) tanh−1(v/49) = t/245 + C0. Setting t = 0 and v = 0, we have 0 = 0 + C0,
or C0 = 0. Thus tanh−1(v/49) = t/5, or v(t) = 49 tanh(t/5) m/s.

(c)
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(d) In the graph of part (c), the solution for the linear drag force lies below the
solution for the quadratic drag force. This latter solution approaches equilibrium
faster since, as the velocity increases, there is a larger drag force.

(e) Note that
∫

tanh(x) dx = ln(coshx) + C. The distance the object falls is given
by x = 245 ln(cosh(t/5)).

(f) Solving 300 = 245 ln(cosh(T/5)) gives T ≈ 9.48 s.

12.(a,b) The general solution of the differential equation isQ(t) = c e−rt. Given that
Q(0) = 100 mg, the value of the constant is given by c = 100. Hence the amount of
thorium-234 present at any time is given by Q(t) = 100 e−rt. Furthermore, based
on the hypothesis, setting t = 1 results in 82.04 = 100 e−r. Solving for the rate
constant, we find that r = − ln(82.04/100) ≈ .19796/week or r ≈ .02828/day.

(c) Let T be the time that it takes the isotope to decay to one-half of its original
amount. From part (a), it follows that 50 = 100 e−rT , in which r = .19796/week.
Taking the natural logarithm of both sides, we find that T ≈ 3.5014 weeks or T ≈
24.51 days.

15.(a) Rewrite the differential equation as du/(u− T ) = −kdt and then integrate to
find ln |u− T | = −kt+ c. Thus u− T = ±Ce−kt. For t = 0 we have u0 − T = ±C
and thus u(t) = T + (u0 − T )e−kt.

(b) Set u(τ)− T = (u0 − T )/2 in the solution in part (a). We obtain 1/2 = e−kτ ,
or kτ = ln 2.

17.(a) Rewrite the differential equation as dQ/(Q− CV ) = −(1/CR)dt, thus, upon
integrating and simplifying, we get Q = De−t/CR + CV . Q(0) = 0 implies that the
solution of the differential equation is Q(t) = CV (1− e−t/CR).

(b) As t → ∞, the exponential term vanishes, and the limiting value is QL = CV .

(c) In this case RdQ/dt+Q/C = 0. Q(t1) = CV . The solution of this differential
equation is Q(t) = Ee−t/CR, so Q(t1) = Ee−t1/CR = CV , or E = CV et1/CR. Thus



1.3 11

Q(t) = CV et1/CRe−t/CR = CV e−(t−t1)/CR for t ≥ t1.

1.3

2. The differential equation is second order since the highest derivative in the
equation is of order two. The equation is nonlinear due to the y2 term (as well as
due to the y2 term multiplying the y′′ term).

6. The differential equation is third order since the highest derivative in the equation
is of order three. The equation is linear because the left hand side is a linear function
of y and its derivatives, and the right hand side is only a function of t.

8. y1 = e−3t, so y′1 = −3e−3t and y′′1 = 9e−3t. This implies that y′′1 + 2y′1 − 3y1 =
(9− 6− 3)e−3t = 0. Also, y2 = et, so y′2 = y′′2 = et. This gives y′′2 + 2y′2 − 3y2 =
(1 + 2− 3)et = 0.

11. y1(t) = t1/2, so y ′1(t) = t−1/2/2 and y ′′1 (t) = −t−3/2/4. Substituting into the left
hand side of the equation, we have 2t2(−t−3/2/4 ) + 3t(t−1/2/2 )− t1/2 = −t1/2/2 +
3 t1/2/2− t1/2 = 0. Likewise, y2(t) = t−1, so y ′2(t) = −t−2 and y ′′2 (t) = 2 t−3. Sub-
stituting into the left hand side of the differential equation, we have 2t2(2 t−3) +
3t(−t−2)− t−1 = 4 t−1 − 3 t−1 − t−1 = 0. Hence both functions are solutions of the
differential equation.

14. Recall that if u(t) =
∫ t
0
f(s) ds, then u′(t) = f(t). Now y = et

2 ∫ t
0
e−s

2

ds+

et
2

, so y′ = 2tet
2 ∫ t

0
e−s

2

ds+ 1 + 2tet
2

. Therefore, y′ − 2ty = 2tet
2 ∫ t

0
e−s

2

ds+ 1 +

2tet
2 − 2t(et

2 ∫ t
0
e−s

2

ds+ et
2

) = 1.

16. Let y(t) = ert. Then y ′′(t) = r2ert, and substitution into the differential equa-
tion results in r2ert − ert = 0. Since ert 6= 0, we obtain the algebraic equation
r2 − 1 = 0. The roots of this equation are r1,2 = ±1.

19. Let y = tr. Then y′ = rtr−1 and y′′ = r(r − 1)tr−2. Substituting these terms
into the differential equation, t2y′′ + 4ty′ + 2y = t2(r(r − 1)tr−2) + 4t(rtr−1) + 2tr =
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(r(r − 1) + 4r + 2)tr = 0. If this is to hold for all t, then we need r(r − 1) + 4r +
2 = 0. Simplifying this expression, we need r2 + 3r + 2 = 0. The solutions of this
equation are r = −1,−2.

22. The differential equation is second order since there are second partial deriva-
tives of u(x, y). The differential equation is nonlinear due to the product of u(x, y)
times ux (or uy).

26. Since ∂u1/∂t = −α2e−α
2t sinx and ∂2u1/∂x

2 = −e−α2t sinx we have α2uxx =
ut, for all t and x.

29.(a)

W mg=

=

µ

µ

µ

T tension
L

(b) The path of the particle is a circle, therefore polar coordinates are intrinsic to
the problem. The variable r is radial distance and the angle θ is measured from
the vertical.

Newton’s Second Law states that
∑
F = ma. In the tangential direction, the

equation of motion may be expressed as
∑
Fθ = maθ, in which the tangential

acceleration, that is, the linear acceleration along the path is aθ = Ld2θ/dt2. ( aθ
is positive in the direction of increasing θ ). Since the only force acting in the
tangential direction is the component of weight, the equation of motion is

−mg sin θ = mL
d2θ

dt2
.

(c) Rearranging the terms results in the differential equation

d2θ

dt2
+
g

L
sin θ = 0 .




