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Abstract This paper presents a new model for VoIP workload generation. The
novelty of our proposal consists in modeling the sessions by characterizing both
the user behavior (session level) and the packet generation for an active call (intra-
session level) with easily measured parameters and low computational complexity.
This approach also facilitates systematic study of changes in user behavior and voice
codec. The session level was modeled by analysis of call-holding time and time
interval between successive calls. The model for call-holding time, characterizing
the individual user behavior, uses the Pareto type 2 probability distribution. The
time interval between calls is obtained from aggregate traffic and can be modeled by
exponential probability distribution. Aggregate traffic is obtained by superposition
of simultaneous sessions. The data used to characterize the session level were
collected at the backbone of two Brazilian telecommunication carriers. The model
for intra-session level comprises the characterization of the packet size and the
packet inter-arrival time. The intra-session model was based on data generated in
a laboratory environment, in order to properly characterize the codec influence on
packet generation and to avoid the effects of delay, jitter and loss commonly present
in an operational network. Models for constant bit rate and variable bit rate codecs
were considered. A simulator was implemented and the results indicate that our
model properly mimics the characteristics observed in real traffic and can be used for
VoIP modeling and workload generation. Additionally, an application to automate
the performance analysis was developed.
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1 Introduction

The appropriate design of the network infrastructure is vital to support applica-
tions’ demands. The network capacity can be under or super dimensioned leading,
respectively, to problems in quality of service or to an inefficient utilization of the
available resources. The application traffic usage plays a fundamental role in network
planning. While a Web application demands bandwidth, low round trip time and low
packet loss, real time applications also require low delay and jitter.

In order to allocate resources in an accurate way and to evaluate application
performance, it is necessary to use accurate traffic models. The goal of network
modeling is to represent its behavior as close as possible to reality. This enables
one to evaluate the Quality of Service (QoS) and correctly allocate the resources
for a given application. Daniel and Virgilio [29] stated that a good model needs to
represent the reality with simplicity and accuracy to make it easier to understand and
to provide reliable results.

Traditional telephone systems were extensively studied and well known models
are available to assist engineers in planning the network capacity of such systems.
However, traditional models fails to characterize VoIP (Voice over IP) traffic
accurately, as showed in [14]. This happens because the VoIP call-holding time
presents a different behavior from traditional telephone calls by the fact that long
calls are not a rare event in VoIP systems. Call-holding time for VoIP is modeled
with heavy tailed probability distributions, and furthermore, the traffic generated
by codecs in use today are not handled by traditional models, leading to practical
problems in network design and performance prediction for VoIP systems.

In this paper we present a new model for VoIP traffic generation and a software
for capacity planning of VoIP systems. The proposed model characterizes session
and intra-session levels in order to generate the aggregated traffic. The parameters
of the model were estimated by using real data collected from two Brazilian telecom-
munication carriers. The first one offers a pure VoIP service, in other words, users
receive and originate calls using only VoIP. The second one converts the mobile
phone traffic to VoIP standards in order to exchange calls between heterogeneous
end user technologies. The accuracy of the proposed model is confirmed through
computer simulation by comparing the model workload generated with real data. A
capacity planning tool was also developed to help network administrators to predict
user perceived quality of VoIP systems by simulating a queue system fed with the
traffic generated by the proposed model. The capacity planning tool performs a
statistical analysis of simulation results and estimates the user perceived quality using
the E-Model [9].

The proposed model characterizes the behavior of session and intra-session in a
separated way. This approach leads to some advantages, like simplicity and accuracy,
when compared to existing models. The session model is composed by the call-
holding time and the time interval between successive calls. The intra-session model
is directly related to the codec (coder-decoder algorithm) in use. There are many
available codecs, each one with its own particular characteristics. The codec output
traffic can be CBR (Constant Bit Rate) or VBR (Variable Bit Rate) and we have
modeled codecs from both approaches. The data set used to characterize intra session
behavior were generated in laboratory environment, using known softphones, like
Skype and Ekiga, and available ITU-T’s audio database [1].
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Based on the proposed model, a simulator that generates synthetic VoIP traffic
was developed. The data generated on the simulator was compared with real VoIP
traffic using the auto-correlation function (ACF) and the Hurst parameter. The
obtained results confirm that the data generated properly mimics VoIP traffic.

The remain of this paper is structured as follows. Section 2 summarizes related
works, including recent publications on VoIP modeling. Section 3 presents the pro-
posed model and the estimated parameters. Section 4 describes the implementation
of the simulator for workload generation and presents an analysis of the obtained
results. Finally, conclusions and future works are presented in Section 5.

2 Related works

In the early 90’s, Leland et al. [27] showed that the nature of Ethernet traffic is
statistically self-similar. A process is self-similar when it keeps part of its stochastic
characteristics along a certain range of scales. This result has contrasted former
works that stated the data traffic was Markovian [18] or could be characterized by
packet trains [24]. The work of Leland et al. [27] provides an explanation for the
self-similarity of the data traffic. More recently, Abry et al. [4], provides additional
explanations regarding self-similarity and heavy tails in the Internet traffic.

Following these discoveries regarding of self-similarity in network traffic, Chen
et al. [14] stated that the use of the exponential distribution to model the VoIP call-
holding time is inappropriate. In order to model the VoIP traffic, they used data
collected from a mobile phone system and suggested a mixture of two lognormal
distributions to model the call-holding time.

Studies of the VoIP traffic generated by voice codecs were initially made by
Schulzrinne et al. [25] and Casilari et al. [12]. Both papers suggest to use the ON–
OFF model, being the ON state the speech time and the OFF state the silence time.
Schulzrinne et al. used data from VoIP calls and Casilari et al. collected data from
video conferences. In both papers it was concluded that a lognormal distribution can
be applied to characterize the ON and OFF states.

A deeper approach to model the codecs traffic was proposed by Menth et al.
in [30] where the authors used audio sources from an international database [7] and
the software Picophone [35] for coding and transmission. Regarding CBR codecs,
they proposed a model that uses deterministic inter-arrival time and constant packet
sizes. Menth et al. used the ON–OFF model for codecs with silence detection and a
Markov Chain with Memory [2] for VBR codecs.

Huang et al. [19], made a study regarding the behavior of codecs in the presence
of packet losses. Voice traffic was generated using the software Skype, which
implements Forward Error Correction (FEC) mechanism. The studied codecs were
G.729, iSAC (internet Speech Audio Codec) and SVOPC (Sinusoidal Voice Over
Packet Coder). All those codecs implement algorithms to adapt to the packet losses,
properly adjusting the packet size. The G.729 codec varies the packet size in discrete
levels. They report a great variability related to the packet sizes of iSAC and a smaller
variability for SVOPC.

In this paper, we present an analysis of VoIP traffic by decomposing the aggre-
gated traffic according to the individual user behavior, henceforth referred as session

Author's personal copy



Multimed Tools Appl

modeling, and intra-session, at packet level, for VBR and CBR codecs. Our model is
simpler than the proposed in [30] because it uses probability distributions and a time
series model (Auto Regressive Moving Average, ARMA) to model the performance
metrics instead of detecting voice activity by windowing process or other heuristics
methods. This study complements previous work presented in [16] with a deeper
analysis and adding the VBR traffic analysis.

3 Model description

The general idea of the proposed model for VoIP traffic characterization is based
on the Scalable URL Reference Generator (SURGE) model, presented by Crovella
et al. in [6], originally designed for Web servers. The SURGE model is different
from others because it was developed based on the user behavior and the application
characteristics. SURGE model applies the idea of user equivalent, according to
Crovella et al. defined as follows: “The workload generated by SURGE should
roughly correspond to that generated by a population of some known number of
users. Thus, the intensity of service demand generated by SURGE can be measured
in user equivalents (UEs). A user equivalent is defined as a single process in
an endless loop that alternates between making requests for Web files, and lying
idle. Both the Web file requests and the idle times must exhibit the distributional
and correlational properties that are characteristic of real Web users. Each UE is
therefore an ON/OFF process”. In our model, we do not use the concept of user
equivalent and instead of it we use the aggregated inter arrival time, for two main
reasons: (a) the aggregated inter arrival time at session level is simpler to obtain
than the individual user behavior, by simply observing the VoIP signaling messages,
which do not exist in Web systems, and (b) the aggregated inter arrival time seems to
fit very well with an exponential distribution, leading to good analytical perspectives.

The proposed model for VoIP systems uses five variables, as illustrated by Fig. 1.
The variables are classified in two categories: session level representing the user
behavior and intra-session level which represents the packet flow generated by one
session. The variables are described as follows:

1. Session level

(a) Time Interval Between Calls (δs): Represents the time interval between
successive VoIP sessions.

(b) Call Holding Time (ωs): Describes the user call-holding time. From this
point, the time from the call initiation until its end will be referred as session
active.

2. Intra-session level

(a) Packet Size (l p): Represents the packet size for a given session.
(b) Time Interval Between Packets (δp): This is the time interval between

successive packets for one user session, observed at the sender, as generated
by a certain codec algorithm without the effects of packet processing or
network delays.

(c) Deviation in Time Interval Between Packets (εp): This is the variable delay
added to each packet in a sender due to packet processing.
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Fig. 1 Aggregated traffic produced by two non simultaneous voice conferences

The call-holding time and the time interval between calls are variables at the
session level and are related to the user behavior. When a session is active, the packet
generation starts according to the three variables: l p, δp and wp; these variables are
strongly related to the codec in use.

3.1 Modeling the session level

In order to identify the models to characterize the variables at session level, it was
necessary to capture real traffic from VoIP systems. The following sections describe
the results from data collected in two major telecommunication carriers using VoIP
in Brazil.
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3.1.1 Data set

Data were collected from two telecommunications carriers. Carrier 1 offers a pure
VoIP service and Carrier 2 offers a mobile phone service but internally converts
the traffic to VoIP. On both carriers, data collection were carried out at the network
backbone, which consists of a non congested Ethernet network in both cases. Packets
belonging to the same session were identified based on the IP address (source and
destination) and the sequence number from RTP protocol (Real Time Protocol [33]).
The latter is necessary because the same user could have different destination
calls simultaneously, as in a conference for example. In the following paragraphs
a detailed description of the data collection for each carrier is presented.

Carrier 1 The VoIP service offered by Carrier 1 uses SIP protocol (Session
Initiation Protocol) [32] for signaling and RTP protocol for data transport. The
SIP protocol was designed to interact with other Internet protocols, initializing,
modifying and ending sessions, independently of the media or application. When a
session begins, voice is coded/decoded by a codec and transmitted with RTP protocol.
The codecs in use are ITU G.711 [22] and ITU G.729 [21]. G.729 is used by 93 %
of the sessions and the remaining sessions use G.711. The G.711 has a sampling
frequency of 8 kHz and 8 bits per sample resulting in a rate of 64 kbps. This codec
guarantees a high quality for the voice and it is used frequently as a reference
standard. G.729 codec tries to achieve a good voice quality with lower transmission
rate. G.729 possible rates vary among 6.4 kbps, 8 kbps and 11.8 kbps, depending on
the desired voice quality. Both codecs in use at this carrier are CBR.

The analyzed network had about 10,000 users by the time of the data collection,
in September 2007. The access network was formed mainly by ADSL (Asymmetric
Digital Subscriber Line) links. The VoIP traffic generated by users is transported by
a non congested Gigabit Ethernet network. In order to collect the data, the Ethernet
switch ports that serve as backbone were mirrored in a way that the total VoIP
system traffic was captured using the open source protocol analyzer Wireshark [31].
Call-holding time was calculated with the analysis of the time interval between SIP
INVITE and the respective BYE messages. The time interval between calls is the
time between two consecutive INVITE messages.

Information regarding the data set used to model the user behavior (session level)
can be found in Table 1. The modeling for this carrier was performed using data sets
1, 2, 3 4 and 5. Data sets 6 and 7 were used for model validation. The analysis was
done with busy hour traffic (BHT) and the data were carefully analyzed to ensure
that all metrics present stationarity.

Table 1 Data used to model
the user behavior
(session level)

Data set 1 May 4, 2006
Data set 2 September 17, 2007
Data set 3 September 18, 2007
Data set 4 September 19, 2007
Data set 5 September 20, 2007
Data set 6 September 21, 2007
Data set 7 September 22, 2007
Data set 8 August 3, 2009
Data set 9 October 26, 2009
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Carrier 2 It is a mobile phone carrier that uses VoIP to transport the calls originated
in the mobile phones destined to other telecommunication carriers. The traffic is
transfered from one carrier to another via an interconnection gateway. The voice
coding is made by AMR (Adaptive Multi-Rate) codec [3] and the resulted data
are sent through media gateways with RTP protocol. The signaling is made by
BICC (Bearer Independent Call Control) protocol [20]. BICC messages IAM (Initial
Address Message) and RLC (Release Complete Message) were used to identify the
beginning and ending of a VoIP call. The time interval between calls was identified as
the time between two IAM messages. The call-holding time is the time between IAM
and RLC messages for a VoIP terminal. Carrier 2 has 80 % of its clients with prepaid
charging plans and the remaining clients have postpaid plans. Data were obtained in
two collections of eight hours done in weekdays in August and October 2009 (Data
sets 8 and 9). The transport network is also a non congested Gigabit Ethernet.

In following sections, the probability distributions that characterize the session
are shown. The methods used to verify the goodness of fit were Quantile-Quantile
Plot (QQ-Plot) and Kolmogorov–Smirnov test. The QQ-Plot consists of plotting one
distribution against another. When points gather on the 45◦ line there is a good
adherence between both distributions. All statistic analysis were made using the R
statistic software [34].

3.1.2 Modeling the call-holding time

Carrier 1 It was observed a heavy tailed behavior which can be modeled by Pareto
type 2 probability density function. Pareto distribution is a heavy tail distribution
that foresees extreme events [15]. Pareto type 2 or Lomax distribution [26] was used
because traditional Pareto distribution can not properly represent required time
values because it does not generate values lower than the scale parameter. Pareto
type 2 can generate values lower than the scale parameter and have the same heavy
tail behavior. Its cumulative distribution function is defined as

F(x) = 1 −
(

1 + x
β

)−α

, (1)

where α is the shape parameter and β is the scale parameter.
Figure 2a illustrates the QQ-Plot which confirms the adherence of empirical to

theoretical data. The parameters α and β were estimated by the maximum likelihood
method. The obtained results were 2.16 for α and 166 for β. For α ≤ 1, the mean is
not convergent and for 1 < α ≤ 2, the mean converges but the variance does not.
The α value obtained is near of the non-convergence region for variance, leading
to a significant variability of the data. The average time of ωs was 143.70 s and the
standard deviation was 490.41 s. For this reason, we applied the QQ-Plot to verify
the adherence between empirical and theoretical distributions. Results indicate that
Pareto type 2 distribution can properly characterize ωs.

Carrier 2 The analysis performed regarding Carrier 2 data was similar to the
previous carrier and the empirical data also showed a good adherence to Pareto
type 2 distribution. Figure 2b presents graphically the adherence between the
theoretical and empirical distributions using the QQ-Plot. The estimated values for
the distribution parameters were: α = 2.50 and β = 60. This α value indicates that
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Fig. 2 Quantile-Quantile plot of Pareto type 2 distribution compared with ωs at Carrier 1 (a) and
Carrier 2 (b), with confidence level of 95 % (dashed lines)

the variability of the Carrier 2 call-holding time is lower than Carrier 1. In Fig. 2b,
because of a greater α value, less points appear in the tail of the distribution.

3.1.3 Time interval between calls

Carrier 1 Time interval between calls in telephone systems is usually described
by an exponential distribution [17]. In order to confirm that hypothesis, the
Kolmogorov–Smirnov goodness of fit test was carried out with the empirical data and
the theoretical exponential distribution. The obtained p value was 0.84. For rejection
of the adherence hypothesis, the p value must be less than 0.05 [23]. The exponential
distribution is parametrized only by the average time δs which was 1.125 s. As
illustrated in Fig. 1, δs represents the time between two successive calls.

Carrier 2 The interval between calls from Carrier 2, δs, also presented an exponen-
tial distribution. The Kolmogorov–Smirnov test resulted in p = 0.83 which confirms
mathematically the good adherence. The average δs observed was 0.506 s.

In both cases, a fast decay of the auto-correlation function (ACF) for δs series was
observed, confirming the independence of successive call arrivals.

3.2 Modeling the intra-session level

The data set used to model intra-session level were generated in a laboratory
environment in order to avoid effects of network impairments such as network delays
and packet loss. These distortions could lead to a model that does not characterize
only the codec, but also a specific network behavior. For each studied codec, 64
calls were generated using the available audio files from ITU-T [1]. The packet flow
resulting from each voice conference was modeled separately and a general model
was proposed for each codec.

The transmission of voice streams uses RTP protocol to transport voice encoded
by a particular codec algorithm. For the two VoIP systems under study, different
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codecs are used, mainly G.711 and G.729. Both generate a constant bit rate transmis-
sion. However, as there is a trend to use VBR codecs and in order to make a more
extensive study, the modeling of intra-session was carried out using voice samples
obtained from International Telecommunications Union for the English language
encoded with the G.711, G.729, iSAC and SILK codecs [1].

3.2.1 Packet size (lp)

The packet size is determined by the payload (coded voice) and the Ethernet, IP,
UDP and RTP headers. The payload varies along the sessions but the headers have
a fixed size of 58 bytes (due to protocols Ethernet, IP and UDP and RTP).

G.711 The data used to model the packet size of the G.711 codec were generated in
Ekiga software. We used G.711 A-Law due to the fact that this version is employed in
most of the world, including Brazil. The packet size is 214 bytes for the entire session,
because it is a CBR codec. The FEC mechanism was not used.

G.729 The packet sizes are 16 bytes and 20 bytes for transmission rates of 6.4 kbps
and 8 bps, respectively. The FEC mechanism was disabled in this test.

iSAC The packet size for iSAC codec varies over the voice conference, which
characterizes it as a VBR codec. This variation is illustrated in Fig. 3, which shows
the time series of consecutive packet sizes.

Considering the size of packets as a time series, we discovered that it could be
characterized using an ARMA (Auto Regressive Moving Average) model. This
model was studied by Jenkins and Box in [11] and is based on the dependence of
the Zt in function of the past Zt−k elements and was assembled from the union
of the model AR(p) and MA(q). In our proposed model for VoIP, the index t
represents the order of arrival and Zt is the packet size. The AR(p) model is given

Fig. 3 Size of packets in a
voice conference coded by
iSAC
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Table 2 ARMA(2,1) typical parameters for modeling packet size l p for iSAC

φ1 φ2 θ1 μ at std

1.117 −0.190 −0.631 159 22

by Zt = μ + φ1.Zt−1 + . . . + φp.Zt−p + at, where μ is the mean of the process, at

represents white noise and φ1, . . . , φp are parameters of the model. The MA(q)

model is given by Zt = μ + at − θ1.at−1 + . . . + θq.at−q, where the current value of
Zt is composed by a weighted sum of present and precedent random noises. The
values of θ1, . . . , θq are model parameters. In ARMA(p, q) model the values p and
q respectively indicate the number of parameters in the AR and MA model.

Once the model is identified, the next step is to estimate the parameters and test
the goodness of fit. The estimation method used was based on maximum likelihood
function. Details on the method can also be found in [11]. The estimated parameters
for the model are summarized in Table 2. Figure 4 shows the ACF of residuals, the
QQPlot demonstrating a good fit for one voice conference packet sizes modeled by

Fig. 4 Summary of ARMA(2,1) goodness of fit for packet size of a voice conference coded with
iSAC
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Table 3 ARMA(2,1) typical
parameters for modeling l p for
SILK codec

φ1 φ2 θ1

Typical parameters 1 (76 %) 1.281 −0.332 −0.600
Typical parameters 2 (24 %) 0.240 0.462 0.548

ARMA(2,1) and the LJung–Box test. The LJung–Box test is commonly used for
evaluation of randomness of residuals at distinct lag of a time series modeled by an
ARMA model [10]—if the p values for each lag is greater than a limit value, marked
with dashed lines, the hypothesis of randomness of residuals can not be rejected.

SILK The SILK is a VBR codec developed by Skype to replace SVOPC [28]. For
this codec, the ARMA(2,1) model fits well the sequence of packet sizes generated in
voice conferences. The ARMA parameters are summarized in Table 3. Two typical
parameterizations were identified. Tests for goodness of fit are shown in Fig. 5, which
confirms that ARMA(2,1) characterizes well the data series of packet sizes. Figure 5
shows the ACF, the QQPlot of residuals and the LJung–Box test.

Fig. 5 Summary of ARMA(2,1) goodness of fit evaluation for packet size of a voice conference
coded with SILK
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Fig. 6 Cumulative empirical distribution of εp compared to a Gaussian probability distribution

3.2.2 Time interval between packets (δp)

The VBR codecs usually produce packets of variable size at constant time intervals,
in order to reduce the delay and jitter. If the time intervals between packets were
variable depending on information, the delay and jitter could severely affects the
quality perceived by the users. For all the codecs under consideration, the δp is
constant for the session, and the size of packet varies depending on the data. For
G.711, G.729 and SILK typical observed value was δp = 20 ms, and for the iSAC was
δp = 30 ms. FEC mechanism was inactive.

Table 4 Parameters for εp
when modeled with a Gaussian
distribution

Mean (s) Standard deviation

G711 0.02 0.0047
G729 0.02 0.0038
iSAC 0.03 0.0070
G729 0.02 0.0022
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3.2.3 Deviation in time interval between packets (εp)

The εp variation occurs mainly as a consequence of processing time, due to the multi-
task nature of operational systems, and enqueue delay, generated by packetization
algorithm. We recognize that εp could strongly affect the burstiness of the aggregate
traffic, and influences the time interval between packets. εp was calculated from the
data set and analyzed. The time series of successive observations of εp shows no auto-
correlation, allowing modeling with probability distributions. Although there was no
exact match with common probability distributions, their values seem to follow a
Gaussian distribution. Figure 6 illustrates the cumulative distribution of empirical
data compared with the Gaussian theoretical distribution (dashed line), for all codecs
under consideration. Table 4 shows the parameters for εp when modeled with the
Gaussian probability distribution.

4 Workload generation

In order to test the quality of the workload generation, a discrete event simulator
was implemented, using the approach described in [5] and [13]. The software was
implemented in Java language to make it independent of the platform. The operating
principle is as follows. The interval between sessions was generated according to an
exponential distribution. It is possible to have many active sessions simultaneously
and each active session is handled by a separate thread in the simulator. The call-
holding time was generated using the Pareto type 2 distribution. While the session
is active, packets are generated according to ARMA(2,1), as described previously,
and the user can freely configure its parameters. Besides the workload generation,
the simulator also implements a FIFO queue whose maximum queue size can be ad-
justed. The heavy tail behavior of ωs seems to be typical for VoIP systems, according
to our findings and works from other authors [12, 14]. The alpha parameters usually
lies between 2.1 and 2.6. Using these assumptions allows the determination of the
beta parameter by calculating the mean, which can facilitate the modeling process.

4.1 Simulation results

The simulator was parametrized according to Carrier 1 data set to test the workload
generation of a pure VoIP traffic. The queue size was considered large enough
to prevent any packet drop. Package delay, queue occupancy and link utilization
were computed from simulation results. In order to verify the model, the resulting
synthetic traffic was compared with real data. A new data set was collected to
perform the validation. Aggregated traffic at scale of 100 ms from three hours of
traffic in the busy hour traffic (BHT) was considered. It is known that the time
series representing aggregated traffic commonly presents a slow decay of its auto-
correlation function, which is an indication of traffic self similarity. In a previous
work [16], it was showed that aggregated traffic of Carrier 1 presents long range
dependence, leading to a slow decay of the auto-correlation function. Figure 7 shows
the ACF for real and synthetic data. Note that both curves are quite similar and
exhibit long range dependence.

Author's personal copy



Multimed Tools Appl

Fig. 7 Autocorrelation
function of the aggregated
traffic for the real and
synthetic data

Another way to evaluate the presence of long range dependence is through the
Hurst parameter (H). For self-similar series with long range dependence, 1/2 < H <

1. When the Hurst parameter is closer to 1 the degree of the self-similarity and long
range dependence is higher [15]. The Hurst parameter was estimated by Wavelet
method. It was found to be 0.655 for synthetic traffic and 0.667 for real traffic. This
result denotes that both traffics present self-similar characteristics with long range
dependence.

The fact that both curves in Fig. 7 are in agreement and the Hurst parameters for
both synthetic and real data traffics were very close and in the range of a self-similar
process are a good indication that the proposed model properly characterizes the
VoIP traffic.

As an example of model utilization the queue simulator was configured with a
fixed service rate, FIFO discipline and infinity queue capacity, in order to verify the
queue occupancy. The workload generator was used to produce the input traffic with
a model parametrized for the SILK codec and average δs of 120 s, resulting in a
aggregated traffic of about 3 Mbps. Each simulation was made with a generation
of 10 million packets and the link rate was progressively increased. Figure 8 shows
the queue size as a function of queue utilization with a dashed line representing the
limits for a confidence interval of 95 %. The figure also shows the queue size when
the call-holding time is modeled using an exponential probability distribution. The
queue occupancy was quite different—the Markovian model tends to underestimate
the average queue size.

Additionally, a software to automate the analysis was implemented. This appli-
cation estimates the MOS (Mean Opinion Score) of VoIP streams using the E-
Model, as described in [9]. The simulated network was configured with a dumbbell
topology, with a bottleneck link between two routers and a workload generated
by the proposed model. Two type of analysis were implemented: (a) evaluate the
MOS for a specific workload condition over a single link with constant service time,
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Fig. 8 A queue performance with FIFO, infinite buffer and fixed service rate

in bits per second, and (b) search for a link capacity to fulfill a desirable MOS,
given a workload condition. Regarding the first option (a), the user can configure
the bottleneck link capacity (bps), link delay (seconds) and the proposed model
variables, including the codecs—the output is the estimated MOS, the delay and
jitter for packets, with a configurable confidence level. There are graphical options to
examine the response, as shown in Fig. 9, which can help the user to visually confirms
the system stability. In the second option (b), the user sets the parameters for VoIP
workload generation and a desired MOS level. The system starts a simulation with
an over-estimated bottleneck link capacity, and from the simulation results the MOS

Fig. 9 Example of output of the software for automated analysis: queue delay
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Fig. 10 Example of output of the software for automated analysis—link capacity search

is calculated. If the obtained value is greater than the desired MOS, the bottleneck
link capacity is reduced by half of the previous value and the process is repeated—
the next link rate to be tested is obtained with a binary search, until the desired MOS
is attained. Figure 10 shows an example of the application output for the second
type of analysis. By examining the output, the network designer can predict the
performance and set the appropriate link capacity or the appropriate reservation of
network resources for the system to work properly. All tasks are performed through
computer simulations, with confidence level configured by the user.

4.2 Comparison with other models

In the systems under study, the use of CBR codecs dropped from 90 % in the
first year of measurements to less than 10 % at the last year. Traditional models
for telephone systems fail to capture the autocorrelation structure of VoIP traffic.
Many authors have reported the self similar behavior of VoIP traffic by analyzing
the auto-correlation function of aggregated traffic which can indicate whether the
traffic exhibit long range dependence. Additionally, the increasing availability of
more powerful hardware is popularizing the use of VBR codecs.

ON–OFF models with heavy tail probability distributions, as proposed by [25]
and [12], can be used to produce synthetic traffic at packet level that mimics the
long range dependence of real traffic. However, the parameters of these models are
not easily related to operational conditions of the system, such as call arrival rate,
call-holding time and codecs, therefore, their practical use for network design and
performance prediction is difficult.

The model proposed by Menth et al. [30] addressed the problem of capturing long
range dependence in VoIP VBR codecs, with good results. The authors claim to be
the first model for VBR audio codecs and the employed model is the Markovian
Chain with Memory [2]. However, its parametrization for specific traffic conditions
is not easily performed—the authors published a table with the parameters in their
website and do not consider how the call-holding time affects the aggregated VoIP
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traffic. It is important to note that VBR codecs present both short and long range
dependence—the first caused by temporal and spatial redundancy explored by the
codec to improve its performance and the second caused by user behavior.

In order to compare the performance of the proposed model we collected only the
VBR sessions of real traffic, coded with SILK and iSAC codecs. We captured 3.33 h
of traffic (61,552,138 packets). In order to illustrate the performance of proposed
model, we also generated synthetic traces using the self similar series and using the
Markovian model. The self similar series was generated employing the Fractional
Gaussian Noise (FGN) method [8]. For the FGN, the Hurst parameter of aggregated
traffic was estimated using the Wavelet and R/S methods. Figure 11 shows the ACF
for the aggregated traffic at one second scale, compared with the proposed model,
FGN and Markovian. One can see that the proposed method presents a closer match
to the real traffic. The self similar series, generated with FGN, can mimic the long
range dependence, but the short range dependence of real trace was not properly
reproduced.

The model we developed splits the problem of modeling VoIP traffic into two
layers: the session layer, modeling the user behavior, and the intra-session layer,
modeling the codec behavior. This approach presents the advantage of enabling
the study of changes in user behavior, for example, as a result of changes on
charging plans or changes from business users to home users. Furthermore, the
session layer can be easily parametrized with aggregated arrival rate of calls and
with the call-holding time for the individual sessions, which is modeled by Pareto
type 2 distribution—the alpha parameter affects the long range dependence of traffic.
One could use the typical values or estimate the parameters with own data—all the
parameters can be obtained from signaling protocol analysis. The call-holding time
is affected by the alpha parameter, and this variable is related to the long range
dependence of the aggregated traffic. We conjecture that the alpha value could be
typical for specific set of users, which is useful for network planing and pricing.

Fig. 11 Auto correlation
function of aggregated traffic
generated by several models
(time scale one second)
considering only VBR codecs,
compared with real traffic

Author's personal copy



Multimed Tools Appl

With this model it is possible to predict the consequences in the traffic caused by
modifications of user behavior or by changes in the codecs independently. To model
the intra-session level we apply the ARMA Model, with parameters that depend on
the codec in use. The resulting traffic mimics the short and long range dependence
of VoIP VBR codecs. Also, the proposed model presents low complexity, and can be
used in computer simulations or by traffic generators. We are not aware of any other
model to represent the VoIP traffic behavior that allows systematic study of such
changing in operational conditions and that relate the model variables with easily
measured values.

5 Conclusion and future work

The proposed model for VoIP workload generation employs simultaneously user
behavior and voice coding algorithms properties to produce the aggregated packet
flow that mimics the real traffic. User behavior was characterized by observing
the data sets from two commercial VoIP systems in Brazil, along three years.
The aggregated arrival rate for call initiation was consistently modeled using the
exponential probability distribution and the call-holding time was modeled using
the Pareto type 2 probability distribution. The intra-session layer was modeled with
conversations data sets in English language, publicly available, for CBR and VBR
codecs.

Example of how to employ the model to predict user quality of experience in
terms of MOS was presented, using computer simulation. Three simulation softwares
were implemented: (a) for workload generation, (b) for queue simulation and (c) for
automating the analysis and capacity planing. The workload generation model was
validated by comparing the synthetic trace with real one, collected exclusively for
validation. The results show that the proposed model can mimic the short and long
range behavior of real traffic.

The model is easily parameterized as its parameters can be obtained by simple
measurements on the network. This is the main advantage of our model if compared
with other available models. Additionally, if the parameters of Pareto distribution
are not known one could use the typical shape parameter. The scale parameter can
be evaluated based on the average of the call-holding time.

The effects of deviation in time interval between packets, εp, is not fully under-
stood and it could play a vital role in the quality of service in small devices. The
analysis of main causes of εp and its effects is a topic of future research.

Acknowledgements We wish to thank the Electrical Engineers Rafael Alesi and Willian Mattos
for their dedication during the year of 2010 in implementation the application to automatize the
analysis of simulation results, the Computer Engineer Jeferson Caldeira for programming the scripts
to analyze the large amount of data, the Electrical Engineer M.Sc. Edgard Massahiro for providing
of the data from Telecommunication Carrier 2 and to Electrical Engineer M.Sc. Mateus Cruz for
providing the data from Telecommunication Carrier 1.

References

1. 12 ISG (2009) ITU-T test signals for telecommunication systems. Test vectors associated to
recommendation ITU-T P.50 appendix I

Author's personal copy



Multimed Tools Appl

2. 16th Int Teletraffic Congr (ITC) (1999) A memory Markov chain model for VBR traffic with
strong positive correlations, pp 827–836

3. 3GPP (1999) 3GPP recommendation TR26.075: performance characterization of the AMR
speech codec

4. Abry P, Borgnat P, Ricciato F, Scherrer A, Veitch D (2009) Revisiting an old friend: on
the observability of the relation between long range dependence and heavy tail. Telecom-
mun Syst (Special issue on Traffic Modeling, its Computations and Applications) 43(3–4):147–
165

5. Banks J, Carson J, Nelson BL, Nicol DM (2004) Discrete-event system simulation, 4th edn.
Prentice Hall

6. Barford P, Crovella M (1998) Generating representative Web workloads for network and server
performance evaluation. SIGMETRICS Perform Eval Rev 26(1):151–160

7. Bavarian archive for speech signals (BAS) verbmobil 6.1 (1996) http://www.phonetik.
uni-muenchen.de/Bas/BasHomedeu.html. Accessed September 2011

8. Beran J (1994) Statistics for long-memory processes. Chapman and Hall, New York
9. Bergstra JA, Middelburg CA (2003) ITU-T recommendation G.107: the e-model, a computa-

tional model for use in transmission planning
10. Box GEP, Pierce DA (1970) Distribution of residual autocorrelations in autoregressive-

integrated moving average time series models. J Am Stat Assoc 65(332):1509–1526
11. Box G, Jenkine G, Reineel G (1994) Time series analysis, 3th edn. Prentice-Hall, New York
12. Casilari E, Montes H, Sandoval F (2002) Modelling of voice traffic over IP networks. In: Proc of

communication systems, networks and digital signal processsing (CSNDSP)
13. Chandy KM, Misra J (1981) Asynchronous distributed simulation via a sequence of parallel

computations. Commun ACM 24:198–206
14. Chen WE, Hung HN, Lin YB (2007) Modeling VoIP call holding times for telecommunications.

IEEE Netw 21:22–28
15. Crovella ME, Bestavros A (1997) Self-similarity in World Wide Web traffic: evidence and

possible causes. IEEE/ACM Trans Netw 5(6):835–846
16. de Mattos CI, Ribeiro EP, Pedroso CM (2010) A new model for VoIP traffic generation. In:

International telecommunication symposium. Brazilian Telecommunication Society, Manaus,
Brazil

17. Flood J (1997) Telecommunications networks, 2nd edn. The Institution of Eletrical Engineers
18. Heffes H, Lucsmtoni DM (1986) Markov modulated characterization of packetized voice and

data traffic and related statistical multiplexer peformance. IEEE J Sel Areas Commun SAC-
4:856–868

19. Huang TY, Huang P, Chen KT, Wang PJ (2010) Could Skype be more satisfying? A QoE-centric
study of the FEC mechanism in an internet-scale VoIP system. IEEE Netw 24(2):42–48

20. ITU-T (2000) Q.1901 bearer independent call control
21. ITU-T (1996) Recommendation G.729. Coding of speech at 8kbit/s using Conjugate-Structure

Algebraic-Code-Excited Linear Prediction (CS-ACELP)
22. ITU-T (1988) Recommendation G.711. Pulse code modulation (PCM) of voice frequencies
23. Jain R (1991) The art of computer system performance analysis: techniques for experimental

design, measurement, simulation and modeling. Wiley, New York
24. Jain R, Routhier SA (1986) Packet trains: measurements and a new model for computer network

traffic. IEEE J Sel Areas Commun 4:986–995
25. Jiang W, Schulzrinne H (2000) Analysis of on-off patterns in VoIP and their effect on voice traffic

aggregation. In: Proceedings of 9th IEEE international conference on computer communication
networks

26. Klugman SA, Panjer HH, Willmot GE (2004) Loss models from data to decisions, 2nd edn
27. Leland WE, Taqqu, MS, Willinger W, Wilson DV (1994) On the self-similar nature of ethernet

traffic (extended version). IEEE/ACM Trans Netw 2(1):1–15
28. Lindblom J (2005) A sinusoidal voice over packet coder tailored for the frame-erasure channel.

IEEE Trans Speech Audio Process 13(5–2):787–798
29. Menascé DA, Almeida VA (1998) Capacity planning for Web performance. Prentice Hall
30. Menth M, Binzenhöfer A, Mühleck S (2009) Source models for speech traffic revisited.

IEEE/ACM Trans Netw 17(4):1042–1051
31. Orebaugh A, Ramirez G, Burke J, Pesce L (2006) Wireshark & Ethereal network protocol

analyzer toolkit (Jay Beale’s open source security). Syngress Publishing
32. Rosenberg J, Schulzrinne H, Camarillo G, Johnston A, Peterson J, Sparks R, Handley M,

Schooler E (2002) RFC 3261: session initiation protocol

Author's personal copy

http://www.phonetik.uni-muenchen.de/Bas/BasHomedeu.html
http://www.phonetik.uni-muenchen.de/Bas/BasHomedeu.html


Multimed Tools Appl

33. Schulzrinne H, Casner S, Frederick R, Jacobson V (1998) RTP: a transport protocol for real-time
applications

34. Team RDC (2009) R: a language and environment for statistical computing. R Founda-
tion for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at http://www.
R-project.org. Accessed September 2011

35. Vitez M (2011) Picophone. Available at http://www.vitez.it/picophone/. Accessed September
2011

Carlos Ignacio Mattos conclude his undergraduate in Electrical Engineering in 2008 from Federal
University of Parana, working with mathematical modeling and frequency response of network
analyzers. Received Master of Science in Electrical Engineering in 2011 from Federal University of
Parana. His interests include modeling, coding and network technologies. Carlos Mattos is currently
with Volvo do Brasil.

Eduardo Parente Ribeiro is a Professor at Electrical Engineering Department of Federal University
of Parana, Brazil. He received Ph.D. degree in Electrical Engineering from Pontifícia Universidade
Católica do Rio de Janeiro in 1996. He did research stage at Vanderbilt University in 1995 and
a post-doctoral stage at The University of British Columbia in 2005. His interests include data
communication, multimedia modeling and signal processing.

Author's personal copy

http://www.R-project.org
http://www.R-project.org
http://www.vitez.it/picophone/


Multimed Tools Appl

Evelio Fernandez received the B.Eng. degree in Electrical Engineering from the Central University
of Las Villas (UCLV), Cuba, in 1985. He received the M.Sc. degree in electrical engineering and
the Ph.D. degree in electrical engineering from the State University of Campinas, Brazil in 1997 and
2001 respectively. He is currently an associate professor at the department of Electrical Engineering
at the Federal University of Parana. His current research interests include channel coding techniques,
digital communications and wireless networks.

Carlos Marcelo Pedroso received the B. Eng. degree in Computer Engineering from Pontifical
Catholic University of Parana in 1994 and Ph.D. degree in Electrical Engineering from Federal
Technological University of Paraná, in 2006. He is currently at the department of Electrical
Engineering at Federal University of Parana. His interests include data communication, modelling
and performance evaluation, multimedia systems and Internet technologies.

Author's personal copy


	An unified VoIP model for workload generation
	Abstract
	Introduction
	Related works
	Model description
	Modeling the session level
	Data set
	Modeling the call-holding time
	Time interval between calls

	Modeling the intra-session level
	Packet size (lp)
	Time interval between packets (p)
	Deviation in time interval between packets (p)


	Workload generation
	Simulation results
	Comparison with other models

	Conclusion and future work
	References


