TE830 – Análise e Operação de Sistemas de Potência

Trabalho Computacional – Parte I

Abril de 2015

- 1. Desenvolver um programa computacional capaz de formar, para uma rede elétrica qualquer (cujos dados de barra e de linha são previamente conhecidos*), as seguintes matrizes:
 - a) Matriz de Admitância de barra (Y_{barra}) e suas componentes real (G_{barra}) e imaginária (B_{barra});
 - b) Matriz de susceptância do fluxo de potência linearizado (B');
 - c) Matrizes B' e B'' do fluxo desacoplado rápido para as versões: BB, BX, XB e XX; (Obs: esse item deve ser implementado somente após as aulas de Desacoplado Rápido);

Análise de resultados: compare e discuta os valores e sinais das matrizes susceptância de todos os casos.

2. Desenvolva um programa de fluxo de potência linearizado capaz de determinar os ângulos aproximados e a distribuição de fluxo de potência ativo para uma rede elétrica qualquer.

Os programas devem ser genéricos, ou seja, ser capaz de processar qualquer sistema elétrico com N_b barra. A apresentação formal dos resultados pode ser feita utilizando o sistema de 14 barras ou 30 barras do IEEE.

<u>Sugestões de implementação</u>: Considere que os dados de linha e de barra sejam informados a partir de um arquivo de dados (não utilize entrada "manual" dos dados durante a execução das rotinas). Para os dados de linha utilize os arranjos $\mathbf{n_a}$ e $\mathbf{n_b}$ para barra inicial e barra final do elemento (LT ou Trafo), \mathbf{r} para resistência, \mathbf{x} para reatância e $\mathbf{b_{sh}}$ para susceptância da LT. Com relação aos dados de barra, utilize os arranjos \mathbf{V} para módulo das tensões, **Tipo** para identificar o tipo de barra, $\mathbf{P_G}$ para geração de potência ativa, $\mathbf{P_D}$ para demanda de potência reativa, $\mathbf{Q_G}$ para geração reativa e $\mathbf{Q_D}$ para demanda de potência reativa, e $\mathbf{b_{sh}}$ barra para shunt de barra.

Prazo de entrega: maio/2015.