MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA ENGENHARIA ELÉTRICA

FICHA2 - PLANO DE ENSINO

CÓDIGO:	DISCIPLINA:				TURMA:	
TE318	CIRCUITOS ELÉTRICOS II				NA	
NATUREZA:		REGIME:		MODALIDADE:		
Obrigatória		null		Presencial		
CH TOTAL:		CH SEMANAL:	CH Prática como Componente Curricular (PCC):		CH Atividade Curricular de Extensão (ACE):	
60h		0h	0h		0h	
Padrão (PD):	Laboratório (LB):	Campo (CP):	Orientada (OR):	Estágio (ES):	Prática Específica (PE):	Estágio de Formação Pedagógica (EFP):
60h	0h	0h	0h	0h	0h	0h
FICHA 2 PREENCHIDA PELO DOCENTE:						
TICHA 2 I KELIKOHIDA I	EEG BOOLITIE.					

EMENTA

Excitação senoidal e fasores.

Análise em regime permanente CA, potência em regime permanente CA.

Circuitos trifásicos.

Transformada de Laplace Aplicada à Circuitos Elétricos.

Resposta em freqüencia.

Quadripolos.

Transformadores.

PROGRAMA

1 Análise senoidal; 1.1 Geração senoidal; 1.2 Fasores; 1.3 Relação fasorial para elementos de circuitos; 1.4 Impedância e admitância; 1.5 Análise de circuitos em regime permanente senoidal utilizando fasores; 1.6 ressonância. 2 Potência em circuitos CA; 2.1 Potência instantânea e média; 2.2 Potência ativa e reativa; 2.3 Potência complexa – triângulo de potências; 2.4 Fator de potência. 3 Circuitos trifásicos; 3.1 Introdução; 3.2 Conexão em sistemas trifásicos (estrela e triângulo); 3.3 Sistemas equilibrados; 3.4 Sistemas desequilibrados. 4 Circuitos acoplados magneticamente – transformadores; 4.1 Indutância mútua; 4.2 Circuitos com indutância mútua e autoimpedância; 4.2 Associação de indutores acoplados; 4.3 Energia armazenada em indutores acoplados; 4.5 Transformador ideal – relação de transformação. 5 Aplicação da Transformada de Laplace; 5.1 Frequência complexa; 5.2 Análise de circuitos utilizando TL; 5.3 Representação de circuitos no domínio s. 6 Resposta em frequência; 6.1 Função de transferência; 6.2 Diagramas de Bode; 6.3 Ressonância.

OBJETIVO GERAL

O aluno deverá ser capaz de compreender e analisar circuitos alimentados por fontes de corrente alternada, sejam eles circuitos monofásicos ou trifásicos.

OBJETIVOS ESPECÍFICOS

Analisar circuitos RLC alimentados por fontes senoidais em transitórios e regime permanente, sejam monofásicos ou polifásicos.

Conhecer os conceitos de acoplamento magnético e transformadores.

Conhecer as potências em circuitos CA monofásicos e polifásicos.

Conhecer e utilizar a Transformada de Laplace para análise de redes elétricas.

Analisar a resposta em frequência de redes elétricas utilizando o diagrama de Bode.

PROCEDIMENTOS DIDÁTICOS

A disciplina será desenvolvida mediante aulas expositivas quando serão apresentados os conteúdos curriculares teóricos.

FORMAS DE AVALIAÇÃO

A disciplina será avaliada através de duas avaliações, que ocorrerão ao meio e ao fim da disciplina. A nota final será calculada pela média simples das notas das avaliações.

BIBLIOGRAFIA BÁSICA

- 1) Nilsson, J.W.; Riedel, S.A.. Circuitos elétricos. 8a Ed. Prentice Hall;
- 2) Hayt Jr., H, W; Kemmerly, J. E.; Durbin, S. M. . Análise de circuitos em engenharia. 7a Ed., McGraw-Hill;
- 3) Irwin, J. D.; Nelms, R. M. Análise básica de circuitos em engenharia. 9a Ed., LTC.

BIBLIOGRAFIA COMPLEMENTAR

- 1) Dorf, R. C.; Svoboda, J. A.. Introdução aos circuitos elétricos. 7a Ed., LTC;
- 2) Alexander, C. K.; Sadiku, M. N. Fundamentos de circuitos elétricos. Bookman.

