16/09/2022 12:30 SIGA

física IV Para EE - NA (TE320)

Informações Ementa Bibliografia Alunos - Solicitações Ocupação

Alunos - Matriculados Encontros Documentos Ficha 2 Extensão

Ficha 2 - PATRICIO RODOLFO IMPINNISI

Programa

Óptica geométrica. Introdução. Refração e reflexão. Lei de Snell. Princípio de Fermat. Formação de imagens por superfícies curvas. Lentes. Magnificação. Lentes compostas. Telescópio. Microscópio. Exercícios.

Óptica física. Introdução. Lei de Coulomb. Radiação eletromagnética. Princípio de Huygens. Interferência. Experimento de Young. Dupla fenda. Coerência. Interferência em filmes finos. Exercícios.

Difração. Introdução. Difração por uma fenda. Localização dos máximos e mínimos. Difração em fenda circular. Resolução. Critério de Rayleigh. Difração por duas fendas. Rede de difração. Espectroscópio. Difração de raios x. Exercícios.

Teoria da Relatividade Restrita. O princípio da relatividade. A transformação de Lorentz. O experimento de Michelson-Morley. A transformação do tempo. A contração da distância. Simultaneidade. Dinâmica relativística. Equivalência massa-energia. O paradoxo dos gêmeos. Transformada das velocidades. O Efeito Doppler para a luz. Exercícios.

Mecânica Quântica. Introdução. Os mecanismos atómicos. Os efeitos fotoelétrico e Compton. De Broglie. Ondas e partículas. A função de onda. Ondas de matéria. A equação de Schroedinger. Interferência eletrônica. O experimento das duas fendas e o princípio da superposição de estados. Tunelamento quântico. O princípio da incerteza e a não localidade das partículas. Emaranhamento quântico. Exemplos.

Condução de eletricidade em sólidos. Níveis de energia em sólidos. Metais, isolantes e semicondutores. Junções.

Física nuclear. O modelo nuclear. Fissão e Fusão nuclear. Quarks e Léptons. Partículas elementares. O Big Bang. Teorias da unificação. Matéria e energia escura. A fronteira do conhecimento.

Objetivo geral

O aluno deverá ter condições de compreender, formular, explicar os fundamentos experimentais e teóricos das teorias da relatividade especial e da física quântica. O aluno também deverá conhecer os fundamentos da condução elétrica em sólidos e os princípios da óptica geométrica e física.

Objetivos específicos

16/09/2022 12:30 SIGA

O aluno deverá poder explicar os fundamentos das teorias relativística e quântica dando exemplos e explicando eles a partir dos fundamentos. Da mesma forma o aluno deverá poder explicar como acontece a condução elétrica em sólidos e as diferenças observadas em diferentes materiais e induzir possíveis comportamentos em circunstâncias predefinidas a partir dos modelos de condução estudados. Finalmente, no caso da óptica geométrica e física o aluno deverá poder explicar as causas dos fenômenos ópticos observados a partir dos conhecimentos estudados e dos modelos desenvolvidos.

Procedimentos didáticos

_

A disciplina será desenvolvida mediante aulas presenciais podendo algumas aulas serem ministradas na modalidade a distância (caso necessário) na forma síncrona. Para as aulas presenciais, a disciplina será desenvolvida mediante aulas expositivo-dialogadas quando serão apresentados os conteúdos curriculares teóricos. Serão utilizados os seguintes recursos: quadro branco, notebook e projetor multimídia. Para as aulas a distância síncronas (caso sejam necessárias) será utilizado o software TEAMS e nesse caso as aulas serão gravadas e disponibilizadas para os alunos que desejem assistir de forma off-line.

As assistências serão consideradas por meio do controle presencial nas aulas (assinatura do caderno de aulas). No caso das eventuais aulas a distância, não haverá controle de assistências

Formas de avaliação

Serão realizadas duas avaliações escritas (P1 e P2) durante o semestre, com valor de 100 pontos nas datas apresentadas a seguir:

17 de outubro ? 21 de outubro Semana acadêmica (SEATEL-Jornada da microeletrônica e semana do calouro)

Data de início: 25 de outubro de 2022

Data de encerramento: 25 de fevereiro de 2023

Recesso: 26/12/22 ? 14/01/23

Aulas presenciais todas as terças feiras (18:30-20:30) e quintas feiras (20:30 ? 22:30)

Número de vagas: 60

Prova P1: 15/12/22 (óptica geométrica, interferência, difração e teoria da relatividade)

Prova P2: 09/02/23 (mecânica quântica, condução em sólidos e física nuclear)

II chamada P1 e P2: 16/02/23

Exame Final: 28/02/2023

Bibliografia básica

- 1. Fundamentos de Física ? 9a Ed. ? Volume III ? Eletromagnetismo. **David Halliday, Robert Resnick, Jearl Walker**.
- 2. Fundamentos de Física ? 9a Ed. ? Volume IV ? Ótica e Física Moderna. **David Halliday, Robert Resnick, Jearl Walker**.
- 3. Física III: Eletromagnetismo 12a Ed. Young & Freedman

16/09/2022 12:30 SIGA

Bibliografia complementar

- 1. Física para cientistas e Engenheiros Vol.2 ? Eletricidade e Magnetismo, Óptica. Tipler P.A., Mosca G.
- 2. Física para cientistas e Engenheiros Vol.3 ? Física Moderna: Mecânica Quantica, Rel. e a estrutura da Matéria. Tipler P.A., Mosca G.
- 3. Física para Engenheiros. Problemas resolvidos e Comentados. Micrea Serban Rogalski, Antônio Ferraz
- 4. Física para Universitários. Eletricidade e Magnetismo (Português) Wolfgang Bauer.
- 5. Lições de física de R. Feynman? 4 volumes (Português) por Richard Feynman

SIGA-UFPR© Sistema Integrado de Gestão Acadêmica